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Structure solution problems for crystals
containing planar defects at a high density
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Features of the diffraction patterns due to the presence of twin boundaries in tetrago-
nal crystals and stacking faults in the form of extra or missing layers in perovskite
structures are discussed. It is shown that at a high density of defects, a shift of the
diffraction peaks from the basic structure causes a significant discrepancy between the
observed diffraction pattern and the results expected from a naive application of Bragg’s
law. For some cases, approaches are proposed that allow to prevent the determination
errors of the lattice constants and other parameters of the disordered structures.

Ananusupyorca 0co0eHHOCTH IU(PPAKIMOHHBIX KApPTHUH, OOYCJ/IOBJIEHHBLIE HAJIUYNEM
IBOMHMKOBBIX I'PAHUI] B TETPArOHAJLHBIX KPHCTANJIAX U Ne(EeKTOB YIAKOBKHU B BHUIE JOIIOJI-
HUTEJbHBIX HJN OTCYTCTBYIOI[HX CJIOEB B IEPOBCKUTHBIX CTPYKTypax. IlokasaHo, 4To mpu
BBICOKOIl ILIOTHOCTH TaKUX Aed)eKTOB CMeEIeHMe IIMKOB OT 0a3HCHOIl CTPYKTYPHI BBISLIBAET
CYII[eCTBEHHBIE HECOOTBETCTBHUSA MEKIy HabJaiomaeMoll AU(PPaKIMOHHON KAPTHUHON U PesdyJib-
TaTaM#, OKUIAEMBIMH HCXOJsl N3 IIPOCTOr0 IpHUMEHeHus 3aKkoHa Bporra. [yis HEKOTOPBIX
clyyaeB IIPEeIJaraloTcs IIOAXOIbI, IIO3BOJSAMOINE N30€KAThL TPYIHOCTEHl IPpHU OIpeneeHun
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napaMeTpoB PELIeTKU U APYIUX XapPaKTEePUCTUK TAKHX PA3yIIOPSAJZOYEHHBIX CTPYKTYD.

1. Introduction

Crystal lattices of many functional mate-
rials are distorted, among other factors, by
the presence of planar defects (PD). Twin
boundaries and stacking faults are the PD
observed often in crystalline materials.
Twinning is known to be a common feature
for a number of the materials undergoing
diffusionless (martensitic) transformations
resulting in a reduced symmetry of parent
phase structure. The interest in the study
of twinned structures is intensified in the
last decade in connection with the relation-
ship of the shape-memory phenomenon to
the formation of the so-called modulated
structures [1-6]. According to the high
resolution TEM results [3, 4] the modulated
structures are to be considered as a stacking
sequence of twin-related lamellae of several
interplanar distances thick; the stacking se-
quence is not well-ordered, but a predomi-
nant twin thickness is only observed.
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The recent studies of complex perovskite-
like oxides (ferroelectric, piezoelectric, mag-
netoresistive, and high-T,. superconducting
materials) have found the structure disor-
der in the crystals due to missing or extra
layers resulting in faulting of a basic struc-
ture along e axis, with no disorder along a
and b axes being observed [7—15]. Such de-
fects in the perovskite-related structures
are often interpreted as a special kind of
stacking faults. Considering that the de-
fects affect considerably the material prop-
erties, the methods are required that would
provide the characterization of such disor-
dered structures. The direct observation of
the stacking sequence in layered materials
by HRTEM is, of course, a very useful
method. However, HRTEM provides data
from a very limited area and the data may
not represent the entire sample. So, the use
of HRTEM only may be insufficient if the
specific characteristics of the disordering
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Fig. 1. Representation of crystals as layered structures: (a) stacking sequence of the (101) atomic
layers in tetragonal crystal containing TB (Ni,MnGa structure as an example); (b) structural layers
in perfect SrBi,Nb,Og structure; the layer A(A’) is a half of the unit-cell; (c) the presence of PD as
two extra SrO-NbO, planes in layer A results in the formation of a new layer B which is considered
as a half of the unit cell of perfect Sr,Bi,Nb;O,, structure.

have to be found. In this case, diffraction
methods seem to be very useful to find the
structural properties of the disordered
stacking sequence in a bulk sample. This is
confirmed by the fact that the regularity
disruption in the stacking order or, in other
words, the PD appearance, affects consider-
ably the electron, neutron, and X-ray dif-
fraction patterns.

The peak broadening, streaking, shift of
peak positions, and intensity modulation
are the diffraction features well-known
from the experimental data and theoretical
works aimed at the study of crystal struc-
tures disordered by PD. In many cases,
these features are pronounced and, there-
fore, they should be used to examine stack-
ing disorder, provided that a correlation be-
tween parameters of the diffraction pattern
and stacking pattern is known. On the other
hand, the same diffraction features may
cause difficulties in structural charac-
terization of the basic structure where the
PD are occurred. This is especially true in
regard to the positions of the basic struc-
ture diffraction peaks which the PD, if pre-
sent, may shift considerably from those re-
lated to the values for the basic structure
lattice constants. So, a significant discrep-
ancy between the observed diffraction pat-
tern and the results expected from a naive
application of Bragg’s law could arise.

Thus, the problem is that on the one
hand, the basic structure structural proper-
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ties are to be determined properly to char-
acterize the stacking sequence. On the other
hand, if the PD effect is disregarded, the
shift of the peak positions due to the pres-
ence of PD presents difficulties in an at-
tempt to determine these structural proper-
ties basing on the peak positions. This work
discusses problems in the crystal structure
solution caused by the effect of various PD
on the basic structure peak positions and
the approaches intended to correlate the PD
density and distribution with the peak posi-
tions.

2. Models of crystals and
calculation technique

To calculate the intensity diffracted by a
layered structure, it is convenient to choose
the coordinate system where two axes lie in
one of the layers where the stacking is con-
sidered and third axis is normal to the
layer. The structures and the coordinate
systems (A;, Ay, Ag) taken in the calcula-
tions are shown in Fig. 1. So, the new coor-
dinate system A;=c—-a; Ay=b; Ag=
anZ/2m2+ 1)+ b/2(m2 + 1) derived from
the axis (a, b, ¢) is suitable for representing
tetragonal crystal containing TB of the sys-
tem  (101), <10-1> (n=c/a); for
perovskite-like structures, A; =a; Ay =h;
Ag =c where (a, b, ¢) is the conventional
coordinate system of a tetragonal crystal.

Functional materials, 17, 3, 2010
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The Monte Carlo simulation technique
based on the matrix method by Kakinoki
and Komura [16] and the difference equa-
tion method by Wilson [17] have been used
to calculate the scattering intensity, I(H,
K, (), in the reciprocal space. Here, H, K,
C are coordinates along the directions paral-
lel to the A;* Ay*, and Ag*. The calculation
procedures are detailed e.g. in [18—-25], we
only emphasize some important things. The
assumption of structural order in the planes
of layers and a disorder in the stacking se-
quence of the layers results in that the scat-
tering intensity should be calculated along
the reciprocal lattice rods prespecified by
integers H and K considering { as a con-
tinuous variable along Ag*. The Monte
Carlo approach allows the intensity calcula-
tion for any PD type, provided that stack-
ing model of the layers is given. The stack-
ing model describes in a probabilistic way
the position and type of the next layer de-
pending on the preceding layers. The prob-
abilistic laws will be discussed where appro-
priate in the following sections.

3. Crystals conlaining coherent
twin boundaries of the (101),
10—-1 system

The diffraction patterns have been shown
to be very complex for crystals containing
coherent twin boundaries at a high density
[18-23]. It was found that no simple corre-
spondence is observed between any charac-
teristic of the diffraction pattern and a pa-
rameter of the twinned structure. In par-
ticular, both average thickness of the twins
and dispersion of the twin thickness distri-
bution affect the peak profile widths and
even positions of the tetragonal doublet
components.

Crystal of a low cell tetragonality: single
mode distribution of twins. The results dis-
cussed in this section relate to tetragonal
crystal with the ratio ¢/a = 1.01. An exam-
ple of such crystal is the ferroelectric
BaTiO; where a variety of twinned struec-
tures was found depending mainly on the
material grain size. The twins are assumed
to be distributed in the crystal according to
a log normal function P(n) = f(u, c), where
n is number of the (101) planes in a twin,
p is the distribution midline, and o is the
distribution dispersion. The thickness dis-
tributions were the same for both twin-re-
lated domains, so that the twin distribution
over the whole crystal is a single-mode
function.
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Fig. 2. Intensity distributions calculated in a
range of the reciprocal lattice sites 002/200
for a crystal containing twins of various av-
erage thickness, n,,. To provide different
values n,,, u value of the log normal distri-
bution was varied in the calculation, the dis-
tribution dispersion, ¢ = 2.0, being constant.
The vertical dashed lines show the positions
related to the given ratio ¢/a = 1.01.

A change in the diffraction pattern due
to a decrease of the average twin thickness,
other structural parameters being constant,
is illustrated in Fig. 2. It is seen that the
components of the tetragonal doublet tend
to be broadened with decreasing twin thick-
ness, n,,. The broadening has a pronounced
asymmetry; as a result, a "plateau” is
formed between the peaks that increases in
its intensity as the average twin thickness
decreases. A further increase of the "pla-
teau” intensity with decreasing average
twin thickness down to a critical value, n,
results in the formation of one very broad
peak instead of the tetragonal doublet. It is
to note that the peak width decreases as the
average twin thickness decreases still fur-
ther, and the peak position is consistent
with a ’cubic’ structure with the lattice con-
stant value (a + ¢)/2.

Value of the twin thickness distribution
dispersion may be considered as an indica-
tion of order (or disorder) in the twin
boundary distribution in the crystal. For
low values of the twin distribution disper-
sion meaning that twins tend to order to
form a superstructure, the number of peaks
and their positions are closely related to the
average twin thickness. Fig. 3 demonstrates
what the diffraction changes occur due to a
decrease of the dispersion, o, in the case of
relatively thick twins. At first, profiles of
the tetragonal peaks tend to be broadened
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Fig. 3. Intensity distributions calculated in a
range of the reciprocal lattice sites 002/200
for a crystal containing twins distributed in
the crystal according to a log normal func-
tion at different distribution dispersion val-
ues, o, the average thickness n,, = 100 lay-
ers being constant.

as the ¢ decreases and then the peak pro-
files take an irregular form and split into
components. The number and positions of
the peaks depend on the average twin thick-
ness. No peaks at the positions of the
"cubic” structure are observed if the aver-
age twin thickness is relatively large as it is
seen, for example, in the curves calculated
for n,, value of 100 layers (Fig. 8). How-
ever, an intense peak at this position is
already seen in the curve calculated for
n,, = 75 layers (Fig. 4). The peak intensity
increases still further with decreasing aver-
age twin thickness, and other peaks become
less intense.

An important point is that if the crystal
constitutes a sequence of thin twins at any
twin thickness distribution dispersion, no
peaks in the diffraction pattern are ob-
served at the positions directly related to a
specified c¢/a ratio. The same is also true
when crystal is composed of thick twins at
a low dispersion value of the twin thickness
distribution. So, a decrease of the twin
thickness distribution dispersion and aver-
age twin thickness may result in such posi-
tions of the diffraction peaks that wrong
values of the lattice constants and even
wrong symmetry of the lattice could be con-
cluded if the effect of the twins on the
diffraction will be disregarded.

Crystal of a high cell teiragonality: bimo-
dal distribution of twins. The diffraction
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Fig. 4. Intensity distributions calculated in a
range of the reciprocal lattice sites 002/200
for a crystal containing twins of various av-
erage twin thickness, n,, the distribution
dispersion o = 1.1 being constant.

features due to coherent twin boundaries in
tetragonal crystal of a high cell tetragonal-
ity are demonstrated in what follows taking
the so-called modulated structures as an ex-
ample. It is just the ordering in the twin
boundary distribution that is supposed to
cause the formation of the modulated struc-
tures, and examples are found in such ma-
terials as magnetic shape memory alloys.
The twins in those structures are very thin
and consist of several atomic layers, and
the most structures show the twin-related
domains of different thickness. So, two
various functions are required to describe
the thickness distributions for the ordered
domains of two orientations. A short range
order in the twin boundary distribution de-
scribed by two probabilistic functions,
Pi(ny, o) and Po(n,y, o), was taken as a
model of the twinned crystal. This model
assumes that a next twin boundary cannot
be formed closer to the previous one than at
a certain minimum distance of n; (101) lay-
ers and n, (101) layers; at other distances,
n, it is formed with a constant probability a.
To be specific, let us consider the cases
when the most probable twin thickness val-
ues are ny = 3 and ny = 2, and the distribu-
tion dispersion and the related average twin
thicknesses, n,,; and n,,, decrease at in-
creasing o from a near-zero value to that
approximating unity. Fig. 5 demonstrates
the changes in the diffraction pattern from
a tetragonal crystal if the crystal is twinned

Functional materials, 17, 3, 2010
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so that the twins are arranged in the above
way. It is seen that after the correlation in
the twin distribution has progressed to the
point where extra peaks formed (the curves
4-7 in Fig. 5), no diffraction peaks are ob-
served in the positions that should be for
the non-twinned crystal with the specified
lattice constants. This raises the question of
whether any peak in such diffraction pat-
tern can be considered as relating to the
basic tetragonal structure. It is an impor-
tant question, because the most intense
peaks in the diffraction patterns of this
kind are usually associated with a basic
crystal with corresponding, that is modi-
fied, lattice constants.

In addition, positions of the peaks near
to the most intense ones depend on the
order parameter so that the distance be-
tween the peaks increases as the structure
becomes more and more ordered. The point
may be a problem in finding true modula-
tion period of such structure if the twin
ordering is insufficient to provide all peaks
of a detectable intensity related to the
structure.

4. Crystals containing exira or
missing layers as random
stacking faulis

To show what problems are encountered
in the solution of such disordered struc-
tures using the diffraction techniques, let
consider the analysis results of the diffrac-
tion patterns for two c-oriented SBN films [24];
one of the films has the stoichiometric composi-
tion SrBioNb,Og (Film #1) and other is bis-
muth deficient (Film #2). Similar problems
with structure solution may occur for other
disordered perovskite-like crystals, for ex-
ample for high-temperature superconductors
of the Bi-Sr—-Ca—Cu-0 system [25].

The HRTEM study [10] of a non-
stoichiometric composition sample has
shown the presence in of structural frag-
ments with a periodicity along c-axis other
than that of the structural fragments in the
stoichiometric sample. The additional struc-
tural fragments did not always form a
whole unit cell, but were often only a half
of the unit cell and, therefore, they should
be considered to be occurred due to stacking
faults. The film #1 has shown the diffrac-
tion pattern where peaks related to the
SrBiNb,Og compound structure with ¢ lat-
tice constant of 2.505 nm are only pre-
sented. Basing on complex profiles of the
diffraction peaks in the pattern from the
film #2, it was suggested that the film

Functional materials, 17, 3, 2010
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Fig. 5. Intensity distributions calculated in a
range between the reciprocal lattice sites
400/004 and 602/206 for a tetragonal crystal
with the ratio c¢/a = 0.87 containing twin-re-
lated domains of different average thicknesses

Mgy and 1,0t (1) —oa=0.1,n,, =12, n, 5 =

1, (2) —a=0.2,n,,="17 n,,="6; (3) — «a
=0.3, n,,="5.3, ngy=4.3; (4) — a=0.3,
Ny = 4.5, n,9=385; () — a=06, n,, =
8.7, ngo=27 (6) — a=0.38, n,, =3.25,
N =2.25; (7) — o=0.95, n,,=3.05,
n,.9 = 2.05. The vertical dashed lines show the

positions related to the given ratio c/a.

structural state should be characterized as a
mixture of at least two phases rather than a
single one. The phase SrBi;Nb,Og (the so-
called phase "m = 2" or SBN) should assumed
to be one of the phases. Considering the
HRTEM results, the compound SroBi;Nb;O4,
(phase "m = 8") should be the second phase.
The attempts to measure the c¢ lattice con-
stants of the structures "m = 2" and "m = 3"
from the peak positions have shown that no
regularity in the measured scattered c lattice
constants is observed (Fig. 6). Note that the
zigzag dependences (like that shown in Fig. 6)
of the lattice constant on the peak index are
typical of one-dimensionally disordered struc-
tures. Thus, we may conclude that both struc-
tural parts, "m = 2" and "m = 8", are imper-
fect and contain stacking faults.

The question arises as to what of these
calculated values is true value of the c lattice
constant. (The term “lattice constant” in a
disordered structure has obviously a local
meaning in the areas where there are more
than two adjacent structure layers). The an-
swer is of interest not only as such, but it
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Fig. 6. The c¢ lattice constant wvalues for
structures "m = 2" (left vertical axis) and
"m = 38" (right vertical axis) derived from
positions of the peaks attributed to the struc-
tures in experimental X-ray diffraction scan
from a film of the xx composition [24].

is necessary to find features of the struc-
ture disorder, first of all, the density of
stacking faults. A problem is that the posi-
tion of each peak is dependent on the den-
sity of stacking faults and, in addition, on
the ratio between the sizes, d, and dp,
along ¢ axis of the layer "A" related to the
matrix structure and the layer "B" formed
due to the stacking fault (as to the "A" and
B" layers, see Fig. 2b, c¢). Unfortunately,
there is no way to find the lattice constant
directly from the peak positions. However,
assuming that the film structure is a random
stacking of the two structural layer kinds,
estimation of the stacking fault density, o, is
possible at unknown values of the lattice con-
stants, using the relative positions of certain
pairs of the peaks. So, first step in the struc-
ture solution should be characterization of
the stacking fault density rather than of the
lattice constants values.

The relative position of peaks 00, and
00/; is expressed in terms of the ratio

7
k(a) = sinBgq; /sinbg,; between sines of the
i i

diffraction angles corresponding to the
peaks. The relative positions were shown to
depend on the density of random stacking
faults, but independent of the ratio between
dy and dp. Some of the dependences are
shown in Fig. 7 where the values k&, are
shown as well derived from positions of the
peaks in the experimental XRD pattern.
From these results, the stacking fault den-
sity in the "m = 2" phase (the stacking
fault is a half of the "m = 3" unit cell) is
about a; = 0.82 and in the "m = 8" phase
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Fig. 7. The ratio 51n600l/sm6001 calculated

0.0 0.1 0.2 0.3

for the diffraction angles related to the
(0010) and (008) peaks of the "m = 2" struec-
ture containing random layers "B" of density
o (left vertical axis and solid curve) and to
the (0014) and (0010) peaks of the "m = 3"
structure containing random layers "A" of
density o (right vertical axis and dashed
curve). The squares in the plot show the val-
ues of smOOOI /s1n900l derived from the re-
lated peak pos1t10ns in the experimental XRD
pattern.

(the stacking fault is a half of the "m = 2"
unit cell) is about oy = 0.36.

The next step in the structure solution
would be determination of the lattice con-
stant ¢ by a fitting procedure with the
given stacking fault density. The ¢ value
variation range is limited by the fact that
some peaks in the experimental pattern are
slightly distorted single lines in contrast to
other peaks having profiles as complex
curves indicating that the peaks are com-
posed of two lines. The positions of the sin-
gle-line peaks are nearly consistent with the
peaks 006, 0012, 0018 of the structure

'm = 2" and w1th the peaks 008, 0016,
0024 of the structure "m = 3". The values
Cvpeor and c¢»_a- of the lattice constants
derived from the positions of these special
peaks are in the 2.495-2.505 nm and
3.330—-3.342 nm range, respectively. As
Fig. 6 shows, these values are closer to one
another than those derived from the posi-
tions of other peaks. In addition, these
peaks appeared to be considerably less
broadened than other observed peaks. So,
the ¢ value in the fitting may be varied in
the range resulted from the positions of the
special peaks 00!. When comparing the in-
tensity distributions calculated under these
assumptions with the experimental pattern,
it was found that the two curves are in a

Functional materials, 17, 3, 2010
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good agreement for c- = 2.505 nm and
Crp—g" = 3.334 nm.

The presence of such special peaks is due
to a minimal shift of the peaks from the
regular positions if stacking faults occur in
the crystal. The indices ! of the peaks follow
a rule which is determined by the ratio be-
tween the sizes (measured along c¢ axis) of
the structural layer related to the matrix
structure and that formed due to the stack-
ing fault. Only in the case that the ratio
dv-A--/|dv-Av- - dv-Bv-| equals exactly to an inte-
ger, peaks are possible having the positions
and profiles absolutely unaffected by the
presence of stacking faults. It seems to be
clear that this integer is just the periodicity
in the indices ! of the peaks 00! which
should show their positions related to the
same value of the c lattice constant.

m=2"

5. Conclusion

The presented results show that interpre-
tation of the crystal containing planar de-
fects at a high density as a system “basic
structure and deviations from the basic
structure” may result in misinterpretation
of the diffraction pattern from the crystal.
This is due to that the diffraction pattern
from such a crystal differs considerably
from that should be for the defect-free crys-
tal. The difference consists in a change of
both number and positions of the diffrac-
tion peaks. The latter fact presents a prob-
lem when applying standard structural
analysis methods to solve such disordered
structures disregarding the presence of the
defects. Because the diffraction pattern de-
pends in a complicated way on many pa-
rameters of the basic structure and planar
defects, no methods are yet proposed that
would provide a means to identify the disor-
dered structures within a general approach.

The structural properties of the crystals
containing stacking faults in the form of
extra or missing layers appear to be solv-
able basing mainly on the positions of dif-
fraction peaks. A necessary condition for
such a structure to be solved in this way is
the prior knowledge of the dependence be-
tween density of the intergrowths and rela-
tive positions of the peaks like that dis-
cussed above in Section 4. In contrast, for
crystals containing twins that tend to order,
estimation of structural parameters from
the peak positions seems to be impossible
even as a first step of the structure solu-
tion. Our preliminary study has shown that
the cell tetragonality of a twinned crystal
affects strongly the relative intensities of

Functional materials, 17, 3, 2010

the diffraction peaks, other crystal parame-
ters being constant. A fitting procedure
using relative intensities of peaks in addi-
tion to the peak positions is expected to
provide a way to identify the structures
properly. There is no doubt that a relation
between structure properties of a disordered
crystal and parameters of the diffraction
pattern from the crystal is too complex to
solute the crystal structure by using the
diffraction methods only. So, a complex of
experimental techniques should be used to
study such structures. In this regard, the
electron microscopy data on the type of the
planar defects may be of particular useful-
ness if not critical.
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IIpo61eMu BM3HAYEHHS CTPYKTYPHM KPHMCTAJdiB
3 BHCOKOI0 KOHIEHTPAI[i€l0 IMJIAHAPHUX Ae(eKTiB

JI.Onixoecovka

Amnanigyrorsca ocobauBocTi sudpakiiiHuX KapTHH, 10 0O0yMOBJIEHI HasBHICTIO ABiliHU!-
KOBHX M€K y TeTParoHaJbHHX KpHucTajax i medeKTiB MakyBaHHS y BUIVIAL ZOZATKOBUX abo
BigcyTHiX mapiB y mepoBcKiTHHX cTpyKTypax. IlokKasaHo, IO IIPH BMCOKiil rycTwHi TaKmx
nedexTiB 3mimienHs mikiB Bix 6a30BOl CTPYKTYpPHU CIPUYMHSE iCTOTHI HeBimmoBimmocTi mixk
Iu(PPaKIiiilHOI0 KapTUHOI, M0 CIOCTEePiraeThCcsl Ta pe3yjbTaTaMU, OUiKYBAHMMU BUXOMSUYMN 3
IPOCTOr'0 3aCTOCYBaHHS 3aKOHY Dperra. [{is messKuMX BUIAAKIB IIPOIOHYIOTHCHA IIIAXOLM, IO
IO3BOJIAIOTh 3aMO0irTH TPYAHOIAM IIPH BHU3HAYEHHI ImapamMerpiB rpaTKH Ta iHIIMX XapaKTe-
PHCTHUK TaKUX PO3YIOPSIIKOBAHUX CTPYKTYD.
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