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Method of quantitative estimates of the parameters of the icosahedral quasicrystals
substructure, including specific phason defects, developed and successfully worked out
using the experimental models of quasicrystalline Al,,Pd,,Req, Tiyq5Zr,q sNij; and
Alg, sPdyMn,, 5 with different preparation technology. The method is based on the analysis
of the diffraction lines’ width of complete X-ray diffraction pattern. The results are in a
good agreement with the prehistory of the samples.

C wucnonpzoBaHMEM ONBITHEIX  KBasWEpPHcTaqnumueckux obpasmos Al Pdy Re,,
Ti41,52r41,5Ni17 u AI64,5Pd21Mn1415 C PasIMYHOi TeXHoJorueil IpPUIroToBieHusA paspaborana u
YCIEeIIHO amnpo0upoBaHa METOIMKA KOJMUYECTBEHHOHM OIEHKMU IIapaMeTpPoOB CYOCTPYKTYPHI B
WKOCAdIPUUECKNX KBAa3UKPHUCTALIAX, BRJIKOUAA crenubuueckue Gasonusie gedexTol. B ocHo-
BY METOIA IIOJIOMKEH AHAINS IIMPUHBI TUPPAKIMOHHLIX JUHUHN IIOJHON KapTUHBI PEHTTEHOB-
croil gudparmuu. IloayueHHbIe PE3YyJbTATHl HAXOAATCA B XOPOIIEM COTJIACHH C IIPEIHCTO-
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pueii o6pasIioB.

1. Introduction

The structure of icosahedral quasicrys-
tals (QCs) discovered by D.Shechtman in
1984 [1] is characterized by aperiodic (qua-
siperiodic) long-range order, an absence of
any translation and rotational symmetry
forbidden for the crystals [2, 3]. An un-
usual atomic structure of QCs defines a
number of new combinations of physical and
chemical properties [3, 4]. To characterize
the properties being dependent on the struc-
ture, it is important to understand their
subjection to the type and distribution of
structural defects. It is known that the con-
cept of QCs substructure along with the
density and distribution of dislocations (as
well as for crystals), includes also phason
defects. The last ones are specific defects
peculiar to the icosahedral structure [5].
The unique interpretation of the "phason
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defect”™ concept does not exist in the litera-
ture today, that can be observed from the
broadened discussions [6]. The concept of "pha-
son,” "phason jumps”, "phason strain” and
"phason modes” are being discussed [7—12]. In
the model of icosahedral quasicrystal struc-
tures composed of regularly arranged two
types of rhombohedrons in an irrational
ratio, "phason” appears as a consequence of
the rhombohedrons stowage rules violations,
and can be considered as a kind of point
defects. A single "phason jump” is an error
in the stowage of rhombs tiles in case of
two-dimensional Penrose tilling [183]. Such
defect adds some local topological and
chemical disorder into the structure. It cre-
ates a strain field around itself, and upsets
the phase of the scattered wave [2]. On the
diffraction patterns from single grains QCs
the presence of phasons becomes apparent in
decreasing of intensity, broadening and
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shifting appropriate reflections and appear-
ance of the maxima of the diffuse scatter-
ing. It was established [14] that these ef-
fects are stronger while the higher is the
component value of the diffraction vector in
the perpendicular subspace — Q;. Some-
times there is the anisotropy of changes of
the diffuse maxima width [9, 15]. Proceed-
ing from the aforesaid, the presence of pha-
son defects in the structure is qualitatively
assessed by the change of the position and
width of the diffraction peaks [14,15,
17,18]. Attempts for quantitative estimat-
ing of the phason defects concentration
have a single character and give conflicting
results [12, 14, 19].

Therefore the aim of this study was to
develop an X-ray method for study of icosa-
hedral quasicrystals, parameters of the sub-
structure and quantitative assessment of
average value of microdeformations, size of
the domains of coherent scattering (DCS)
and density of the phason defects.

2. Samples and methods of
research

For studying the samples were taken,
which contained 100 % of the icosahedral
phase according to the previous studies [20-
22]. Technologies of the samples prepara-
tion were different, that suggests a priory
different density and distribution of defects
in the samples. Some quasicrystalline sam-
ples were ribbons of TI415ZI’415NI17 and
A|64_5Pd21Mn14_5 with 20...50 um thick ob-
tained by superfast quenching of the melt.
Massive Al;oPd; Reg sample was obtained by
solidification in normal conditions. Another
fine-dispersed Tisq 5Zry41 5Nij; sample was
prepared by an intensive fragmentation of
ribbons in an agate mortar. At the samples
selection we based on the established opin-
ion that phasons in the structure can be
introduced during the quenching or defor-
mation [4]. To analyze this structure the
method of X-ray diffraction and transmis-
sion electron microscopy was used. For
processing of diffraction patterns and deter-
mining the parameters of the diffraction
peaks the software package New Profile 3.5
was used.

X-ray study of a substructure is usually
carried out by methods of harmonic analysis
or approximation on the diffraction peaks
width of multiple order reflections using
the sample standard to eliminate a geomet-
ric broadening. Since the harmonic analysis
requires diffraction lines of the standard
and sample to be placed on the same corner,
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Fig. 1. The classic Hall’s plot, graphed using
a number of reflections from the quasicrys-
talline phase of Tiy 5Zrsq gNiy7, for the rap-
idly quenched ribbon sample: I — (18,29),
2 — (20,32), 3 — (26,41), 4 — (28,44), 5 —
(562,84), 6 — (72,116), 7 — (122,197), 8 —
(136,220), 9 — (156,252). The indexes of re-
flections are given according to the method
of J.Cahn [26].

the standard for the exclusion of geometric
broadening is specially made from the same
material. Obtaining of such quasi-standard
is almost impossible. In our research, we
chose a method of approximation, because it
allows using any standard (we used dis-
persed diamond powder), and the width at
the diffraction angle of interest is calcu-
lated from the approximating curve.

To study quasicrystals substructure this
method requires some modernization. This
necessity is caused by the following circum-
stances. Fig. 1 shows the original classical
Hall’s graph built for one of the rapidly
quenched ribbon of Tigq gZryq gNij7. It was
assumed that according to Neumann’s prin-
ciple for the quasicrystals with the fifth
order rotational symmetry an isotropy of
elastic properties should be performed.
Therefore, for study by the classical method
[23] all the reflections were selected which
had their intensity and contrast allowed to
register them securely. However, as shown
in Fig. 1 not all the reflections lay on a
single straight line, but only those that
have one of the diffraction vector components
equal Q,<0.2 nm~1. Reflections of
Q,>0.2 nm™! get out of the linear subjection,
they are significantly broadened, and the sub-
stantial deviation is so greater from the lin-
ear dependence as greater the value of Q,.

In the classical method of approximation
similar emission points from the linear de-
pendence were also observed previously
[24], and they were associated with the
presence of stacking faults in the samples,
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which create additional broadening to micro
dispersion and micro deformation and also
displace maxima. Moreover, reflections with
well-defined indexes get out of the general
broadening dependence. Similar diffraction
effects are created with phason defects on
the diffraction patterns of quasicrystals
[14,15]. It is known that because of the pha-
sons presence the value of broadening and
reflection displacement effect is proportional
to the modulus of vector Q; [12, 14,15],
that is one of the components of the dif-
fraction vector Q. According to the theory
of diffraction and crystallography of quasi-
crystals [25.26] vector Q is a six-dimensional
vector. It is laid out on Q6P = Q3DH +Q3D,.
two three-dimensional vectors. One of
them is Qp that is originally linked with a
cross section of reciprocal space by reflec-
tions surface (in so-called physical or "par-
allel” space), and its modulus is
1Q;?P|=1/d=2sin6/A, and the second vector
Q, is an additional and perpendicular to the
first one in six-dimensional space. Its modu-
lus is calculated from the reflection indexes
and the six-dimensional quasi-lattice pa-
rameter [26]. It is obtained that the broad-
ening of diffraction peaks is a function of
Q; and Q;. Therefore, to learn the sub-
structure it is necessary to analyze the de-
pendence of the reflexes broadening of the
both diffraction vector components. Thus,
the procedure for determining the parame-
ters of the substructure is proposed to carry
out in two stages. During the first stage a
modernized (three dimensional) Hall’s plot
is made and by the method of the least
squares in a special program the type of
plane equation is determined that approxi-
mates the dependence of physical broaden-
ing from Qq and Q; values. During the sec-
ond stage — the DCS value, the micro de-
formations value and phason defects density
are calculated from the plane equation co-
efficients.

3. Results and discussion

A modified Hall’s graph for the same
Tigq 52141 gNij7 ribbon sample is shown in
Fig. 2. It can be seen that for all reflections
(see Fig. 1), the values of physical width in
dimensions of reciprocal space according to
Qq; and Q, acceptably fit in the space near
a plane. The analysis showed that the ob-
served spread of points is not associated
with any selected crystallographic direction.
More likely, the reason lies in the spread of
the error analysis of the experimental pro-
files and approximation error of the experi-
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Fig. 2. Modified Hall’s plot for samples
Tiyq 5Zr41 gNiqj7 in the initial state.

mental profiles by Gauss and Cauchy func-
tions. Approximating Gaussian function can
artificially overrate the width of the narrow
and intensive diffraction peaks, and Cauchy
function may underestimate the width of
the weak and broad peaks. As a result the
diffraction maxima closely located at the
corners that are differently affected by pha-
sons may appear both above and below the
approximating plane.

The expression for the value of the dif-
fraction peak physical broadening, obtained
as a result of the convolution of three
Cauchy type functions, each of them de-
scribes one reason for the broadening:
broadening caused by DCS — PBL, broaden-
ing caused by microdeformations — f¢, and
the broadening caused by phason defects —
B/, will have the form

B = BL + Be + P (1)
In the case of Gaussian approximation
B2 = (BL + (892 + (B, (2)

In the dimension of reciprocal space,
where BL = 1/L, where L — the average size
of the domains of coherent scattering (DCS)
along the diffraction vector Qq (coincides
with the normal to the surface); B¢ = 2eQy,
¢ — the average micro deformations. Type
expressions for P/ were chosen so, what,

M.A.Krivoglaz determines the dislocation
dipoles [25]:

Bf ~ b; Q\n;, 3

because in [7] phasons are identified with

low dislocation dipoles. Here by — the
value of phason jump, ng — concentration
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Fig. 8. Bright field electron-microscopic images of ribbon Tiyq 5Zrsq sNij7.

of phason defects. The value b;=0.32 nm, is
calculated as the atomic displacement that
occurs while rules violating of Penrose
tiles, and this value was close to the experi-
mentally found value for the Al-Cu-Fe qua-
sicrystals [27]. Thus, the physical expansion
of the diffraction peak is determined by the
following expression:

B=%+2Qne+bel\/;, (4)

which is the equation of this type of plane
Z = A+Bx+Cy. The parameters of the sub-
structure are calculated from the parame-
ters of the equation.

Thus for the mentioned sample Gaussian
approximation gives a value of DCS L = 71 nm,
a value of micro deformations € = 0.7-1073,

and the density of phason defects
n = 2.87.1012 ¢m 2. In the approximation
of Cauchy — L =120 nm, € =1.21073,

n=6.71011 cm~2, and it is known that the
true values are in the middle. It may be
noted that the data obtained in the first two
parameters are quite reasonable. Our study
using TEM, which results are shown in
Fig. 3, also gives a value close to the size of
DCS 100...150 nm. It‘s interesting, the
order of phason density value is close to
normal dislocation density for deformed
crystals. Further checking of the method
functionality is related to the fact that the
structure and substructure state is deter-
mined by the composition and previous his-
tory of the sample. Fig. 4 shows that the
intense fragmentation of ribbons led to a
change in the nature of the approximating
plane slope, which consists in increasing the
intercept on y-axis, increasing an angle of
the plane inclination relative to the axis of
Q;; and weak change of the depending on
Q,. Calculations show that the DCS value
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Fig. 4. Modified Halls’ plots for sample
Tigq 52141 sNiy7 in the powder state (I) and in
the ribbon state (2).

decreased twice, micro deformations in-
creased three times, and the density of pha-
son defects decreased from = 7-1011 to
2-1011 em~2. Fig. 5 shows how different the
nature of the approximating planes slope
for three different quasicrystalline phases.
For the icosahedral phase Tigq 5Zrsq gNiq7
there is a significant dependence of the
slope from Qp and Q;. For Al,4Pdy Reg
phase dependence on Qq; is the same, the
dependence on Q| is a little bit smaller, and
the intercept on the ordinate axis is much
smaller. For A|645Pd21Mn85 Sample of the
approximating plane slope is absent, it is
almost parallel to the plane OXY. The cal-
culations of substructure are in the Table.
It says that in sample Al;jPd; Reg obtained
from the equilibrium crystallization, there
is the largest size of DCS and the lowest
micro deformations. In the literature the
phase Algy sPdy1Mny, 5 is noted as one of the
most perfect one [3, 11], indeed we note for
this fast quenched sample the lowest den-
sity of phasons having quite small value of
micro deformations. We also see that high-
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Fig. 5. Modified Halls’ plots for samples Ti,q 52544 sNij; (1), A|64,5Pd21Mn8,5 (2) and Al;yPd, Req (3)

in the initial state.

Table. The substructure parameters for the
investigated samples

2

Sample L, nm € n, cm~
Tiyq 52544 5Niq; ribbon | 120 | 1.2.1078 | 6,7-1011
Tiyq 52r4q 5sNij; powder | 65 |3.4.1073 | 2.3.1011
Alg, 5PdyyMng 5 ribbon | 60 |0.7.1073 | 3.5.10°
Al,,Pd, Req massive | 170 |0.42.10723|7.06.1011

speed quenching crushes DCS. Analyzing
the data table, the following conclusion can
be made. First, obtained substructure pa-
rameters using the developed technique are
reasonable in order of value, and secondly,
their modification while transition from one
sample to another is consistent with the
general ideas of the influence of thermo-me-
chanical treatment onto the structure of
materials. Thus, we have for the first time
the methodology of quantitative estimates
of icosahedral quasicrystals substructure

parameters by XRD.
The authors thank prof.H.R.Ott (Zurich,

Switzerland) for providing the samples.

4. Conclusions

The method of the analysis substructure
parameters of quasicrystalline objects by X-
ray diffraction was developed. The method
was successfully worked out using quasi-
crystalline samples Al70Pd21Re9,
Ti41,5Zr41,5Nil7 and Al64,5Pd21Mnl4,5.
The results are in good agreement with the
prehistory of the samples.
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Y.Cal-

MeToauKka peHTreHOAN(PPAKTOMETPUYHOTO TOCIiTKeHHS
CyOCTPYKTYpPH iKOcaeIpMYHHX KBa3iKpHCTAJIB

C.B.Ba3dupesa, €.H.3y6apes, C.B.Manuxin,
A.T.Ilyzawo6, M.B.Pewemnax, H.B.Deduyx

3 BMKOPHCTAHHAM JOCTifHMX KBasikpucramiuamx spaskis Al,oPd, Reg, Ti41‘52r41,5Ni17 i
A|64,5F’d21Mn14‘5 3 piBHOI0 TeXHOJIOTiEI0 MPUTOTYBAHHA PO3polbJeHo i yemimrHo BifmpalsroBano
MEeTOAUKY KiJTbKicHOI OIiHKUM TapaMeTpiB cyOCTPYKTYpPH iKocaeAPHUHHX KBasiKpUCTATiB,
BKJIIOUaloun crnenudiuni dasonni nedextn. B ocHOBY MeTOny IOKJIameHO aHANIZ3 MUPUHU
mudparifaux JgiHif moBHOI KapTMHM peHTreHiBehbKol amdpariii. Otpumani pesyabTaTy
3HAXOAATHCA y Aobpith 3rofi 3 mepemicTopieio 3paskis.
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