Properties of internal (chemical) pressure in superconducting YBa$_2$Cu$_3$O$_{7-y}$ perovskite created by oxygen

V.F. Khirnyi

Institute for Single Crystals, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Received September 18, 2014

The properties of internal (chemical) pressure P_i in superconducting YBa$_2$Cu$_3$O$_{7-y}$ perovskite are analytically investigated. Predicted are the values of the critical temperature T_c for the main crystallographic axes, the change of the value of dT_c/dP_i and the possibility to obtain YBa$_2$Cu$_3$O$_{7-y}$ samples with $T_c = 166.7$ K.

1. Introduction

Changes in the properties of HTSC doped with metals and of other perovskites are often referred to the influence of the internal pressure P_i on their crystalline structure, see e.g. [1]. P_i is expressed in the form [1]:

$$P_i = (1/k_i)[1 - a_i(x \neq 0)/a_i(x = 0)],$$

where k_i are the compressibility coefficients: volume k_v and linear — in the direction of compressibility along the crystallographic axes “a” — k_a, “b” — k_b, “c” — k_c; a_i, the crystal lattice parameters a, b, c and the elementary cell volume V; x, the quantity of doping impurity.

The properties of the superconducting compound Y(Ba,M)$_2$Cu$_3$O$_{9-y}$ doped with Sr, La are considered in [2]. The impurities selectively substitute up to 35 % of Ba without arbitrary replacement of Y by Sr or La. The substitution of Ba by Sr created conventional chemical pressure. At the same time the substitution by La raised the amount of oxygen and the value of internal pressure in the crystal lattice.

For determination of the value of internal pressure created by oxygen in YBa$_2$Cu$_3$O$_{7-y}$ samples it is necessary to know the relation between the oxygen index and the crystal lattice constants. Such a relation was found in [3, 4], where (T_c—y) varied from 6.2 to 6.9. Thereat, the constants a and c diminished, whereas b increased, i.e. there was observed distortion of the crystal lattice due to internal (local) deformation.
Fig. 1. Dependences of linear compressibility coefficients on the oxygen index of \(7-y\): 1 - \(k_a\), 2 - \(k_b\) and 3 - \(k_c\).

Investigation of the properties of cuprate HTSC with oxygen non-stoichiometry is greatly significant for understanding of the mechanism of superconductivity [5–8]. In the present work there was analytically determined the internal pressure created by oxygen in superconducting \(YBa_2Cu_3O_{7-y}\)

2. Discussion

For this purpose in (1) \(a_f(x \neq 0)\) and \(V(x \neq 0)\) were replaced by \(a_f(7-y)\) and \(V(7-y)\), respectively, with the values taken from [3]; \(a_F(0)\) and \(V(0)\) were assumed to be equal to \(a_i\) and \(V\), respectively, in \(YBa_2Cu_3O_{6.2}\) sample [3]. The values of compressibility coefficients \(k_i\) were taken from [9] for the compounds \(YBa_2Cu_3O_{6.6}\) and \(YBa_2Cu_3O_{6.93}\). As \(k_i\) linearly diminishes with the growth of \((7-y)\) from 6.0 to 7.0 and \(k_a - k_a + k_b + k_c\), each of these terms linearly depends on \((7-y)\), too. They were determined by means of linear extrapolation.

Two known values of \(k_i\) for \(YBa_2Cu_3O_{6.6}\) and \(YBa_2Cu_3O_{6.93}\), i.e. at \((7-y)\) equal to 6.6 and 6.93 [9], were joined by straight line. Fig. 1 represents the dependences of \(k_a\), \(k_b\) and \(k_c\) on the oxygen index values. The oxygen index varied from 6.3 to 6.9 at an interval of 0.1. As follows from Fig. 1, the linear compressibility coefficients change along the direction of the main axes at the rates \(dk_a/d(7-y) = -3 \times 10^{-5} \text{ GPa}^{-1}\), \(dk_b/d(7-y) = -9.5 \times 10^{-5} \text{ GPa}^{-1}\). The volume compressibility coefficient \(dk_v/d(7-y) = -2 \times 10^{-5} \text{ GPa}^{-1}\) [9].

Shown in Fig. 2 are the linear internal pressures directed along the axes \(a\), \(b\) and \(c\), i.e. \(P_a\), \(P_b\), \(P_c\), and the volume internal pressure \(P_v\) depending on the oxygen index.

Their values were obtained from the modified formula (1). The negative sign denotes that there takes place extension. The graphs have a singularity in the form of the change in the slope of the straight lines at \((7-y) = 6.5\) which coincides with the location of the plateau on the dependence of \(I_c\) on the value of \((7-y)\) [4].

As is known [4], the compound \(YBa_2Cu_3O_{7-y}\) has three modifications. They are: the superconducting orthorombic-I phase with \(T_c = 90\ \text{K}\) and \((7-y) = 7.0 \pm (6.8 + 6.75)\); the orthorombic-II phase with \(T_c = 60 \pm 40\ \text{K}\), and \((7-y)\) changing from 6.65 to 6.4; the tetragonal non-superconducting modification with \(6.0 < (7-y) < (6.25 + 6.4)\). The structure transformations in \(YBa_2Cu_3O_{7-y}\) occur without abrupt disturbance of the lattice parameters and of the samples’ composition and properties. Such transformations belong to phase transitions of the second or higher order. Therefore, we assume that the singularity in Fig. 2 arises at the temperature of the transition from the ortho-I to the ortho-II characterized by the change in the curvature of the dependences of \(a\) on \((7-y)\) [3, 4]. This is clearly seen for the dependences of \(a\) \((x \neq 0)\) on \(x\) in doped samples, e.g. in \(YBa_2(Cu_{1-x}Fe_x)O_{7-y}\) [10].

In yttrium and rare-earth HTSC compounds there is observed a universal correlation of \(T_c\) with the quantity of oxygen [4]. Therefore, one can find the dependence of \(T_c\) on \(P_i\) (see Fig. 3) and \(dT_c/dP_i\) at the values of oxygen index ranging between 6.3 and 6.9 (see Fig. 4). Earlier [11] there was revealed the influence of the change in the
content of oxygen in the samples subjected to the external pressure P_e on the derivative dT_c/dP. However, in the mentioned paper the changes of the oxygen index and internal pressure caused by the applied pressure were not taken into account.

Shown in Fig. 4 are the rates of the change of T_c with variation of P_i at different $(\gamma - y)$ values. As follows from this figure, at $(\gamma - y) = 6.5 \pm 6.6$ and 6.8 the values of dT_c/dP_i exceed the value of dT_c/dP for the samples subjected to the influence of the external pressure P up to 13 kbar [12], by two and three orders, respectively. In particular, for $YBa_2Cu_3O_7$, $dT_c/dP = 0.5$ K/GPa (theory) and 0.4 K/GPa (experiment), and only for $PrBa_2Cu_3O_7$ $dT_c/dP = 3.5$ K/GPa [13]. The curves presented in Fig. 4 have two maxima separated by a narrow minimum at $(\gamma - y) = 6.7$. One of them, broad and low, with $(dT_c/dP_i)_{max} \equiv 60$ K/GPa is located in the region of the existence of the ortho-II phase. The other maximum, narrow and high, with $(dT_c/dP_i)_{max} = 166.7$ K/GPa lies in the region of the ortho-I phase.

The change of T_c results in the change of the number of holes n_h per elementary cell [14]. Fig. 5 presents the dependences of n_h^i on P_i, where i denotes the crystal lattice constants a, b and c. As is seen, low P_i values correspond to the threshold pressure P_i^α. For the main crystallographic axes the threshold pressures are the following: $P_a^\alpha = P_c^\alpha = 1.55$ GPa, $P_b^\alpha = 1.25$ GPa. For the volume internal pressure $P_v^\alpha = 0.5$ GPa. Starting from this point, under the influence of the internal pressure created by oxygen, the holes are formed at the rate dn_h/dP_i. The threshold effect revealed in experiments with external pressure P was earlier reported in [12].

![Graph 1](image1.png)

Fig. 3. Dependences of T_c on P_i: 1 – P_a, 2 – P_b, 3 – P_a, 4 – P_c.

![Graph 2](image2.png)

Fig. 4. Change of dT_c/dP_i derivative at variation of the oxygen index of $(\gamma - y)$: 1 – dT_a^c/dP_a, 2 – dT_c^e/dP_e, 3 – dT_b^p/dP_p, 4 – dT_c^s/dP_s.

![Graph 3](image3.png)

Fig. 5. Dependences of the number of holes per elementary cell n_h^i on P_i: 1 – n_h^a on P_a, 2 – n_h^b on P_b, 3 – n_h^a on P_a, 4 – n_h^i on P_c.

![Graph 4](image4.png)

Fig. 6. Dependences of the change in the number of holes per elementary cell dn_h^i/dP_i on variation of the oxygen index: 1 – dn_h^a/dP_a, 2 – dn_h^b/dP_p, 3 – dn_h^a/dP_a, 4 – dn_h^i/dP_s.

Shown in Fig. 6 are the dependences of dn_h^i/dP_i on the value of $(\gamma - y)$, i.e. the rate of the change in the number of holes per elementary cell. Each of these dependences has two maxima. Just as it has been expected, their form correlates with the behavior of the dependences dT_c/dP_i on the oxygen index (Fig. 4). In the paper [11] the authors report the existence of only one maximum at $(\gamma - y) = 6.8$ depending on $d\Delta n_h/dP$, where Δn_h is the concentration of
mobile holes in the CuO₂ planes. Such a fact is explained as follows. In the present work we have taken into account the influence of all the holes on \(T_c \), so the latter changes with \(n_h \) almost linearly [14]. In [11] the graph of the dependence of \(T_c \) on \(\Delta n_h \) is shaped as upturned parabola, since there has been only considered the influence of the mobile holes transported from the chains formed by CuO in the plane CuO₂. Therefore, in the ortho-II phase superconductivity is due to the mobile holes located in the CuO chains. It should be noted that the holes in the CuO₂ planes are partially localized. With further oxidation the mechanism of superconductivity (in the ortho-I phase) is defined by the mobile holes located in the CuO₂ planes, whereas the chains become a reservoir for the holes.

The obtained result allows to make some conclusions. First of all, one can achieve \(T_c = 166.7 \) K in YBa₂Cu₃O₇-\(y \) samples. Secondly, the changes in the value of the derivative \(dT_c/dP \) depend on the degree of oxidation, the quantity of dopant ions and their sdii (see Fig. 4). In particular, if in the sample which exists in the ortho-II modification the value of \((7-y) \) is raised from 6.4 to 6.7 by means of oxidation, doping and/or application of external pressure, \(dT_c/dP \) will at first grow and then diminish. At further rise of \((7-y) \) from 6.7 to 6.8 the derivative will increase again. However, at \((7-y) = 6.8 \) the value of \(dT_c/dP \) will start diminishing at any slightest change in the quality of oxygen and/or \(P_f \). Note that each direction of the main crystallographic axes has its own limiting value of the critical temperature \(T_c : T_c^a = 108.7 \) K, \(T_c^b = 125 \) K, \(T_c^g = 138.9 \) K.

There exists an analogy between the predicted here and experimentally observed behavior of \(dT_c/dP \) reported in many papers. Thus, we assume that, as a rule, the value of \(T_c \) for all oxide HTSC depends on the internal oxygen pressure. One can only change the conditions of \(T_c \) measurement by means of oxidation, doping and/or application of external pressure.

As an example, consider the compound \(\text{HgBa}_2\text{Ca}_2\text{Cu}_3\text{O}_{8+y} \) which \(T_c \) at \(P = 15 \) GPa rises from \(T \) \((P = 0) = 135 \) K up to 150 K [15], whereas at \(P = 30 \) GPa \(T_c = 160 \) K, which is close to the value predicted here. Note that, according to Fig. 6, the behavior of \(dT_c/dP \), with changing \(d\eta_h/dP \) will be similar.

3. Conclusions

Thus, assuming that not only mobile, but all the holes in the samples YBa₂Cu₃O₇ in influence \(T_c \), we predict in the performed analytical investigation that: one can obtain a superconductor with \(T_c = 166.7 \) K; \(dT_c/dP \) is not a constant value, since it increases or diminishes depending on internal pressure of oxygen defined by initial oxidation, doping and/or application of external pressure; each direction of the main crystallographic axes has its own \(T_c \).

Actually, real experiments with high pressures are complicated due to mutual effect of the internal and external pressures.

References