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ZnWO4:Eu3+ and ZnXMg1_XWO4:Eu3+ nanoparticles were obtained by the microwave-hy-
drothermal and the flux methods. The optimal conditions for obtaining nanocrystals with
bright luminescence in the "red” spectral region are determined. The X-ray luminescence
intensity of the 614 nm band for ZnWO4:Eu3+ and Zng gg5Mdg 2g5EUq 03VWO, nanoparticles
are 71 % and 108 %, respectively, versus the 500 nm intrinsic X-ray luminescence inten-
sity of ZnWO, single crystal. ZnWO4:Eu3+ and Zn Mg, 97, Eu, 13sWO, scintillation nanoma-
terials are promising for luminescent tomography for visualization of biological objects.

Keywords: tungstate nanocrystals, X-ray phosphor, luminescent tomography.

ITonyuyeHbl HAHOKPUCTAJIBI ZnWO4:Eu3+ u ZnXMg1_XWO4:Eu3+ TUAPOTEPMAIBHBIM MUKPO-
BOJIHOBBIM METOZOM 1 PaCTBOP-PACILIaBHBIM MeromoMm. OpemesieHbl ONTUMAJIbHBIE YCIOBUS II0-
JyJYeHNs HAHOKPHUCTAJJIOB C SAPKHM CBEUEHHEM B KpacHON obiacTu crnekrpa. HaHoKpucTasibl
ZnWO4:Eu3+ 1 Zng ge5Mdg 285EUg 03VWO, MMEIOT MHTEHCHBHOCTH PEHTIEHOJIOMUHECHEHINY B IO-
aoce 614 um 71 % u 108 %, cOOTBETCTBEHHO, OT MHTEHCHUBHOCTH COGCTBEHHON PEHTIEHOJIOMU-
Hecrennyuy mpu A = 500 EM MOHOKpHcTaLIHYecKoro obpasna ZNWQO,. COUHTHIIANIOHHEIE HA-
HOMATEPHAJIBI ZnWO4:Eu3+ u Zn,Mg,_ WO4:Eu3+ HEePCIIEKTUBHBI JJIsI UCIIOJIb30BAHUA B JIOMUHE-
CIIEHTHOH ToMorpaduum Ijsd BUIYAJU3AINN OHOJOTMYECKUX O0BEKTOB.

CuHTe3 HAHOYACTHHOK PEHTreHOJIOMiHO(MOPIB ZnWO4:Eu3+ i anMg1_xWO4:Eu3+.
1A Tyniyuna, I T Arxyboscora, A.M.ITyzan, O.M.Bosk.

OTpuMaHO HAHOKPHCTAIN ZnWO4:Eu3+ i ZnXMg1_XWO4:Eu3+ TiIpoTepMaIbHIM MiKPOXBU-
JBOBAM METOLOM 1 PO3UMH-POCIJIABHUM METOAO0M. BU3HAUEHO ONTUMAJIbHI YMOBU OTPUMAHHS
HAHOKPUCTAJIIB 3 ACKpaBUM CBiTiHHaAM B 'uepBoHi® o6aacti cnexrpa. Hamoxpucrannm
ZnWO4:Eu3+ i ZngeesMgg 2g5EUg 03VWO, Marors iHTeHCHBHiCTH peHTreHOMOMiHecHeHNil y
cmysi 614 um 71 % i 108 %, BigmoBigHo, Bij iHTEHCHMBHOCTI BJIACHOI PEHTreHOJIOMiHe-
cuernii mpu A = 500 aM moHoKpucramiunoro spaska ZnWO,. Cuurrunaniiini Hamomarepia-
Jau ZnWO4:Eu3+ i ZnXMg1_XWO4:Eu3+ IePCIEeKTUBHI I BUKOPHUCTAHHA y JIOMIiHECIIeHTHiN
Tomorpadil auaa Bisyanisarnii Giomoriunmx o6’eKTiB.

Functional materials, 26, 4, 2019 703



I ATupitsyna et al. / Synthesis of ...

1. Introduction

X-ray fluorescence imaging is a new
method of biomedical imaging [1-5]. How-
ever, nowadays the sensitivity of research
equipment is insufficient, which leads to
low spatial resolution. The combination of
this method with the possibility of using
nanoparticles as a contrast medium demon-
strates the opportunity for improving of re-
search equipment functional parameters [6].
It is known that nanoparticles selectively
accumulate in the tumor (enhanced penetra-
tion and retention (EPR) effect) [7, 8], and
it can lead to a significant increase in de-
tectability research capacity. The lumines-
cence excited with X-rays radiation allows
to visualize the deep-lying tumors. In this
method, the nanoparticles with red and near
infrared X-ray excited emissions (~ 600-
1400 nm) should be used in the so-called
biological tissue transparency window [9].
In the mentioned spectral region, the ab-
sorption coefficients of water, melanin,
desoxy- and hemoglobin (of blood) are low.
The development of the methods using the
X-ray luminescence tomography for visualiz-
ing biological objects was the driving force
for the search of new X-ray-excitable phos-
phors [10-15], in particular the attention was
paid to the Ln3*-doped nanoparticles.

The scintillation materials based on
ZnWO, attract particular attention because
its X-ray luminescence parameters close to
those of cadmium tungstate while it has not
toxicity.

Several synthesis methods for obtaining
ZnWO, nanoparticles were introduced ear-
lier: sol-gel [16, 17], hydrothermal [18],
solvotermal [19, 20], molten salt (flux) [21],
microemulsion-based synthesis [22] etc. Hy-
drothermal synthesis with microwave heat-
ing makes it possible to quickly obtain prod-
ucts of a required morphology and disper-
sion with a narrow particle size distribution
and a high degree of purity. We have pre-
viously shown that ZnWO, nanocrystals ob-
tained by the flux method in lithium nitrate
have the most intense X-ray luminescence
[28]. In addition, we obtained by this
method and investigated mixed Zn,Mg,_
«WO, nanocrystals [24]. The effect of light
output increasing for the mixed Zn,Mg,_
WO, single crystals, with a maximum at x
= 0.5 [25], was also found for nanocrystals
of the same composition [24]. However, an
anomalous increasing of this effect more
than three times was shown at transition to
nanoscale sizes.
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The aim of the work was to obtain
ZnWO,Eu3* and Zn,Mg,_ WO, Eu3* nano-
particles as X-ray-excitable phosphor in the
"red” region.

2. Experimental

2.1 Synthesis of nanoparticles

Hydrothermal synthesis with microwave
heating

We used the following starting materi-
als: Na,WO,-2H,O (special purity grade),
Zn(NQO3),-6H,0 (reagent grade), NH3-H,O of
analytical grade purity (98 %), HNO;
(99.99 %) manufactured by Merk, EuO
(99.999 %) manufactured by Sigma-Aldrich.
Eu(NO3)3-:6H,0 was prepared by dissolving
EuO with concentrated nitric acid. All solu-
tions were prepared in distilled water with-
out additional purification of the starting
materials.

Initially, amorphous precipitate was pre-
pared by co-precipitation of 0.1 M aqueous
solutions of nitrates and Na,WO, at the
room temperature with vigorous stirring.
pH of solutions was adjusted by adding di-
lute aqueous solutions of 30 % NH3-H,O0.
The synthesis was carried out by microwave
hydrothermal method on microwave instal-
lation MARS (GEM Corporation Matthews,
USA) at the temperature of 200°C and fre-
quency of 2,45 GHz for 30 min. The syn-
thesis temperature was previously deter-
mined in experiments on the preparation of
undoped ZnWO, nanocrystals [26]. Upon
completion of the synthesis the white pre-
cipitate was filtered, washed with distilled
water and dried at 80°C in air for 3 h.

Flux synthesis

For the synthesis, we used zinc and euro-
pium nitrates, sodium tungstate, described
above, and Mg(NOj3),-6H,O, which was pre-
pared by dissolving MgO (special purity
grade) in concentrated nitric acid.

Zn,Mg,_,WO,:Eu3* nanocrystals were ob-
tained by crystallization of amorphous pre-
cipitate in molten salt of LINO; [24]. In-
itially, amorphous ZnXMg1_XWO4:Eu3+ sam-
ples were obtained by co-precipitation of
0.1 M aqueous solutions of nitrates (and
corresponding amount of europium nitrate)
and Na,WOQO, at the room temperature with
vigorous stirring. The purified and dried
precipitates were mixed with lithium ni-
trate in a weight ratio of 1:10 and melted
at 300°C, followed by exposure for 16 h.
The reaction product was washed, filtered
and dried at 80°C in air.
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2.2 Characterization

X-ray phase analysis of the samples was
characterized by X-ray powder diffraction
(XRD) on Siemens D-500 powder diffrac-
tometer (radiation Cu-Ka, A= 1.54184 A,
secondary beam graphite monochromator,
Bragg-Brentano geometry).

Morphology of the nanocrystals was in-
vestigated by transmission electron micros-
copy (TEM) wusing EM-125 (SELMA,
Ukraine) microscope. Electron accelerating
voltage was 125 kV, the survey was carried
out in the bright field mode, and the image
was recorded by CCD matrix.

The X-ray luminescence spectra of the
nanocrystals were recorded by means of
spectrometric complex KSVU-23. X-ray
source REYS (U,<40 keV, I,<50 pA) was
used as an excitation.

3. Result and discussion

3.1 ZnWO4.‘Eu3+ nanoparticles, obtained
by hydrothermal synthesis with microwave
heating

The samples of ZnWO4:Eu3+ nanoparticles
were obtained (Cgys+= 0.5, 1, 7, 10 at.%)

and the effect of the pH of the solution on
the phase composition and morphology of
zine tungstate nanocrystals was studied.

XRD patterns proved that all nanocrys-
tals are monophasic with a wolframite-type
monoclinic structure of ZnWQO, (JCDPS No.
15-0774). However, for samples with =7
and 10, a noticeable shift in the position of
the XRD lines is observed. This indicates a
change in the crystal lattice parameters due
to Eu3+ entering to the lattice (Fig. 1).

Earlier, we showed that microwave syn-
thesis of undoped ZnWOQ, at 200°C lead to
formation of nanoparticles in the shape of
"grains” 25-50 nm (pH of solution is 5.5—
6.2) and "rods” 250-300 nm in length and
30 nm in diameter (pH ~ 8-9.5) [26]. This
morphology of nanoparticles is associated
with a predominant growth by one of the
crystallographic directions due to the an-
isotropic structure of ZnWO,.

The TEM-analysis of ZnWO4:Eu3+ nanopar-
ticles showed that pH ~ 6.2 of solution leads
to the formation of nanoparticles with a di-
ameter of about 10 nm and a length of
30+50 nm in case of Cy 3+ = 0.5 % and a di-

ameter of about 20 nm and a length of 50 nm
in case of Cp+ =7 % (Fig. 2). Significant

increasing of ZnWO4:Eu3+ nanoparticles
length, as well as for ZnWO, [26], are ob-
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Fig. 1. X-ray diffraction patterns of ZnWO,
(7 % Eu®") nanocrystals obtained at pH ~ 8
and 200 °C by microwave-hydrothermal syn-
thesis. Vertical lines correspond to the posi-
tion of the peaks of ZnWO, according to
JCDPS No. 15-0774.

served when pH of solution increase to 8.
For a small concentration of Eu3* (0.5 %
and 1 %) at pH ~ 8 the nanoparticle sizes
are J(15-20) nmx(150-180) nm. A slight
increasing of particles to @25 nm Xx(150-
180) nm is observed with an increasing of
europium concentration up to 7 %, how-
ever, at Cg3+ = 10 % grains with a size of

about 10 nm are formed. The doping of
ZnWO, by europium slightly accelerates dif-
fusion and leads to a small increasing of
nanoparticles size (Fig. 2a and b, ¢ and e).
But this is observed only for CEu3+ =
0.5+7 %. With a further increasing of the
europium concentration up to CEu3+ =
10 %, a sharp slowdown of nanocrystals
growth and a decreasing of grain size by
more than 10 times are observed.
Measurement of the X-ray luminescence
spectra of samples of ZnWO4:Eu3+ nanocrystals
with Cg;3+ = 1 % showed an increasing of the

luminescence intensity by more than 3 times
when pH increase from 6.2 to 8 (Fig. 3a). Such
a trend is observed both in the 500 nm band
due to the intrinsic luminescence band of
the WOg complex and in the luminescence
bands associated with transitions of
5D0 — 7"F. to Eu3* ions. The most intensive
peak of 614 nm corresponds to the intracen-
ter transition 5D0 - 7F2.

The photoluminescence of ZnWO4:Eu3+ has
been studied quite well, since this material is
promising as a white phosphor [27]. It was
shown in these works that energy transfer
from tungsten luminescence center to Eu3*
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Fig. 2. TEM images of ZnWO4:Eu3+ nanocrystals with different Eu3* concentrations obtained from
solutions with different pH: a) ZnWQO,(0.5 % Eu) pH 6.2, b) ZnWOQO, (7 % Eu) pH 6.2, ¢) ZnWO,
(0.5 % Eu) pH 8, d) ZnWO, (1 % Eu) pH 8, e) ZnWO, (7 % Eu) pH 8, f) ZnWO, (10 % Eu) pH 8.

upon photoexcitation (Apr = 280 nm,
330 nm) is observed. It was found that in
the photoluminescence spectra of

ZnWO,:Eu3* with an increasing of europium
concentration, the intensity of the 470 nm
band decreases and the intensity of the Eu3*
band in the "red” region of the spectrum
increases [27]. We do not observe such an
exact correlation for the X-ray lumines-
cence spectra of samples with different con-
centrations of europium (Fig. 8b) since, in
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addition to the process of energy transfer,
we showed that for ZnWO, nanocrystals
there is a direct relationship between the
size of the nanoparticle and the X-ray lumi-
nescence intensity [28]. The test samples
had differences in size (Fig. 2¢—f).

For ZnWO4Eu3* samples obtained from
solutions with pH ~ 8, the increasing of
europium concentration from 0.5 % up to
7 % leads to increasing of luminescence in-
tensity, especially the 614 nm band. When
the europium concentration increases up to

Functional materials, 26, 4, 2019
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Table 1. The X-ray luminescence intensity at A

max

nanocrystals obtained from solutions with pH ~ 8

of the ZnWO, single crystal and ZnWO,:Eu®*

Sample X-ray luminescence intensity at | X-ray luminescence intensity at
Mgy = 500 nm, a.u. Apare = 614 nm
ZnWOQ, crystal 1 0.1
ZnWO,Eu(0.5 %) 0.03 0.07
ZnWO, Eu(l %) 0.02 0.10
ZnWO, Eu(7 %) 0.02 0.71
ZnWO,.Eu(10 %) 0.01 0.39
- 3 zowo,Eu(1%) 200, crystal —1,0 5
. : _ =
5 E 08 >
© - _ =
20,21 £ %% &
2 < _loa E
i) © ] o
= = 192 X
Z 0,11 iz 00
x 2 o ./\}L ZnWO :Eu (10%)
_‘é’ A ZnWO,:Eu (7%)
1 — ZnWO,:Eu (1%)
00 . : ' . g A ZnWO :Eu (0.5%)
400 450 500 550 600 650 700 400 450 500 550 600 650 700
A, nm A, nm

Fig. 3. X-ray luminescence spectra of ZnWO4:Eu3+ nanocrystals: a) CEu3+ =1 %, (1) — obtained
from solutions with pH ~ 6.2, (2) — pH ~ 8; b) obtained from solutions with pH ~ 8 and the

spectrum of a ZnWO, single crystal.

10 %, a decreasing of the luminescence in-
tensity of europium is observed, which may
be due to both quenching and a decreasing
of nanoparticles size, as was found for
ZnWO, nanoparticles [28]. In favor of the
latter assumption, it is intensity decreasing
of the main luminescence band A = 500 nm
is observed for ZnWO,Eu3* nanocrystals
with Cg,3* = 10 %. Table 1 shows the X-ray
luminescence intensities of ZnWO4:Eu3+
nanocrystals obtained from solutions with
pH ~ 8 versus data for ZnWO, single crys-
tal. The intensity of "red” luminescence
band for ZnWO,Eu* nanocrystals with
CEu3+ 7 % is comparable with the intrin-
sic luminescence of the ZnWO, single crys-
tal and is equal to 71 %.

3.2 Flux synthesis of tungstate nano-
crystals

The mixed nanocrystals of zinc and mag-
nesium tungstates doped with europium
were obtained in this work by the flux
method. XRD patterns proved that all
Zn,Mgg g7_xEUg 03WO, nanocrystals are mo-
nophasic with a wolframite-type monoclinic
structure (JCDPS No. 15-0774). The TEM-
analysis of nanoparticles showed that sam-
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ples of different compositions are grains
with a size of up to 200 nm. We did not
observe correlations of the composition of
nanoparticles and grain sizes. The TEM
image of Zn0485Mgo485EU003WO4 nanoparti-
cles is shown in Fig. 4.

In [24], we showed that for undoped
mixed nanocrystals of zinc and magnesium
tungstate was found 4.5-fold increasing of
the X-ray luminescence intensity for
Zng sMgy s WO, versus ZnWOQ, [24]. This is
due to the observed a non-linear dependence
of the oxygen vacancy concentration on the
ratio of zinc and magnesium cations in
Zn,Mg,_,WO, nanocrystals with a minimum
for ZnggMgy WO, sample. Oxygen vacan-
cies in mixed crystals lead to lattice distor-
tion and formation of a nonradiative relaxa-
tion channel competing with the WO$~ lumi-
nescence center that reduce the luminescence
intensity of the main band.

The X-ray luminescence spectra of
Zn,Mgg g7_4EUg 03WQO, nanoparticles are a
superposition of the intrinsic luminescence
band of wolframite with A, ,.. = 500 nm and
the transition bands to Eu®* (Fig. 5). There
are also shows the spectrum of ZnWO, sin-
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Fig. 4. TEM-image and diffraction pattern of Zng 455Mgg 4g5EUg 3VWOy,-

gle crystal. The X-ray luminescence intensi-
ties of all the ZnXMgo_97_XEU0_03WO4 Samples
were calculated versus the parameter of
ZnWO, single crystal (shown in Table 2). The
dependence of the X-ray luminescence inten-
sity at A,,, = 614 nm on the composition of
mixed nanocrystal is nonlinear and has a
maximum for the Zn0685M90285EU003WO4
sample. The X-ray luminescence intensity of
this sample at A = 614 nm is slightly higher
than the intrinsic X-ray luminescence inten-
sity (A = 500 nm) of ZnWO, single crystal,
which makes this material promising for lu-
minescent tomography of biological objects.

4. Conclusions

The nanosized ZnWO4:Eu3+ were obtained
by the hydrothermal-microwave method
with varying europium concentration and
preparation conditions. XRD, TEM images,
and X-ray luminescence of the samples were
studied. The most intense X-ray lumines-
cence in the "red"” region of the spectrum
was observed for the sample with 7 % of
Eu3*, which was prepared in the solution
with pH ~ 8 at 200°C. The X-ray lumines-
cence intensity of the 614 nm band for the

Table 2. The X-ray Iluminescence

intensity at A

) ZnWo, crystal ] 10 5

=) ®

< —1 08

p= 8

. 4 =
= o —os @

c o 1 o
< —04 €
© Jos =2
g —jo2 ¢
% 4 X

0,0

5 A Mg,  Eu,, WO,
IS : 5 M9, B, WO,
| 10509y 405 E Y WO,
o an, Mg, ., .Eu, . WO,
x zn, Eu, WO,

400 450 500 550 600 650 700
2, nm
Fig. 5. X-ray luminescence spectra of

Zn,Mg, 97_4EUg isWO, nanocrystals obtained
by the flux method.

sample is 71 % versus the 500 nm intrinsic
X-ray luminescence band of ZnWO, single
crystal.

ZnXMgo_97_XEU0_03WO4 mixed nanocrystals
were obtained by the flux method and their
complex study was carried out. The inten-
sity dependence of the "red” X-ray lumines-
cence band (614 nm) on the composition of
the mixed nanocrystal is nonlinear and has
a maximum for the Zn0685M90285EU003WO4
sample. The X-ray luminescence intensity of

of the ZnWO, single crystal and

max

Zn, Mg, o7_EUgy 93WO, nanocrystals (obtained by the flux method)

Sample X-ray luminescence intensity at | X-ray luminescence intensity at
Amax = 500 nm, a.u. Apmar = 614 nm, a.u.

ZnWO, crystal 1 0.1

Zng g7EUg 03 WO, 0.07 0.76

Zng 6g5M0p 285EUg 03O, 0.06 1.08
Zng 485MJ0.485EU0,03WO, 0.12 0.79
Zn 55MQ gg5EUq 03 VWO4F255 0.10 0.80
Mgy, 97EUp 03 WO, 0.06 0.49
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this sample at A = 614 nm exceeds the in-

tensity of

(A

max
The obtained scintillation nanomaterials

intrinsic X-ray luminescence
= 500 nm) of ZnWOQO, single crystal.

are promising for luminescent tomography
for visualization of biological objects.
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