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The base energy of the electron subsystem of a condensed matter of a crystalline type
was considered by quantum field theory methods. Here we considered monatomic conden-
sates, because they are most simple from the point of view of the objects quantum
description. In particular, evaluations were carried out for boron and the electronic
subsystem was only taken into account. The exact value of the crystal internal energy as
a function of temperature is obtained, and this dependence is completely determined by the
Fermi-Dirac factor. Internal energy, as a function of this factor, has a sufficiently simple
(parabolic) form. It is shown that the matrix elements included in the coefficients of this
dependence are divided into two groups: centrally symmetric and anisotropic. Centrally
symmetric matrix elements determine isotropic interactions. Such interactions are charac-
teristic of liquids. Anisotropic matrix elements determine the interactions characteristic to
crystals. It is shown that competition between them result in the phase transitions. The
possibilities of analytical estimates for the contributions due to the electronic subsystem
to the liquid-gas and crystal-liquid phase transition temperatures are analyzed.

Keywords: electronic subsystem, phase transitions, Fermi-Dirac factor.

Paccmorpena 06azoBasg sHeprus 3JeKTPOHHON MOACHCTEMbBI KOHIEHCHPOBAHHON CpeIbl
KPUCTANJINYECKOTO THIIA METOJaMH KBAHTOBOM TEOPHMH IIOJgA. PaccMOTpeHHEe IPOBOLUJIOCH
IJIA OZHOATOMHBIX KOHJIEHCATOB, KAK HamboJiee IIPOCTHIX ¢ TOUKH SPEHHS KBAHTOBOTI'O OIIKCA-
HUA 00'BEKTOB. B UacTHOCTH, OIEHKM MPOBOAHMJINCE AJs 00pa, M YUUTHIBAJIACH TOJNBKO DJIEK-
TPOHHASA MmogcucTeMa. llogydeHO TOUHOe 3HAUEeHWE BHYTPEeHHeN SHePruy KPUCTAJLIa Kak
GYHKIUM OT TeMIIEPATYyPbl, IIPUUYEM 9T4 SABUCHMOCTL IEJIMKOM OIpegeiseTcsa (PaxTOpoOM
Depmu-dupaka. BHyTpeHHAA sHeprud, Kaxk QYHKIHUA OT 9TOTO (haKTopa, MMEeT JOCTATOUHO
mpocroii (mapaboamvueckuii) sug. [loxkasaHo, 4TO MaTPUUHBIE SJIE€MEHTBI, BXOAAIINE B KOod-
UIIMEeHTEI 5TOM 3aBUCUMOCTH, PA3HEJSIOTCA Ha [Be I'PYIIIBI: [eHTPAJbLHO-CUMMETPHUUYHbIE U
aHusoTpouHbie. [[eHTPANBHO-CHUMMETPHUYHBIE MATPUYHBIE DJEMEHTHI OIIPELeNAI0T H30TPOII-
Hble B3aMMOJAENCTBUA, XapPaKTePHBIE AJS KUIKOCTE. AHM3OTPOIHLIE MATPUYHBIE 3JI€MEHTHI
OIIPeeqA0T B3aNMOIEMCTBU S, XapaKTePHbIe A KPHUCTANI0B. II0Ka3aHo, YTO KOHKYPEHIU
MEXIYy HUMHU IPUBOAUT K (PA3OBBIM HepexomaM. AHAIUBUPYIOTCS BO3MOMKHOCTU AHAJIUTHUYIEC-
KHX OIEHOK BKJAJa SJIEKTPOHHON MOACHCTEMBI B TeMIEPATYDPHI (PASOBBIX IIEPEXOJ0B MKIJ-
KOCTB-Ta3 U KPUCTALI-KUIKOCTD.

®azoBi mepexomum y Kpucrajaax: BHECOK exexkTrpoHHol uigcucremu. A.J[.Cynpyw,
B.BJauywk, JI.B.IIImenvosa, C.M.€ucos

Posraauyro 6asoBy eHepriio eJNeKTPOHHOI HiacucTeMM KOHIEHCOBAHOIO CEpPeIOBHIILA
KPUCTAJNIYHOrO TUITYy METOAaMMU KBAHTOBOI Teopil moad. Posrasa mpoBoguBCs IJIsi OTHOATOM-
HUX KOHJEHCATIB, K HaANOIJABII IPOCTUX 3 IOIIALY KBAHTOBOrO ounmcy o0’exriB. 3o0xKpema,
OLIIHKY IIPOBOJAMJNCS AJsA OOpPY, i BpaxoByBasacda TiIbKHU eleKTPoHHA Iigcucrema. OrpuMano
TOUHE 3HAUEHHS BHYTPIMIHBOI eHeprii Kpucrasa Ak QYHKII Bixg remmeparypu, IPpUUOMY LA
3aJIeKHICTh IiJKOM BusHauaeTbca @Gaxropom DPepmi-Iiparka. BHyTpimHa eHeprid, #AK
dyHKIOig Big mporo daxTopa, mMae gocurth mpoctuil (mapaboaiunwuit) Burasazx. [loxkasamo, mo
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MaTPUYHI eJeMeHTU, IO BXOAATH y KoedimienTu 1miel 3ajeKHOCTi, PO3AiNAOTHCA Ha JBL
TPYNIHN: IeHTPaJbHO-cUMeTpUuHi ¥ anizorpomnui. IlenTpasbHo-cUMeTPUYHI MATPUUHI eeMeH-
TH BMBHAYAIOTH i30TPONHI B3aeMofil, XxapaKTepHi ajd piinH. AHi30TpONHI MaTpUyHi ejeMeH-
T BU3HAYAIOTH B3AEMOJii, XapakTepHi aasa KpucraaiB. IlokazaHo, 1110 KOHKYPEHI[iA MiK
HUMU TPUBOIUTH N0 (PAa30BUX IepexoiB. AHANI3YIOTHCA MOMKJIUBOCTI aHANITUYHUX OIIHOK
BHECKY €JIEKTPOHHOI IIigcucreMu B TemiepaTypu (pasoBUX IIE€PEXOiB pimuHa-ras i KpucraJ-
piguHAa.

1. Introduction

As is generally known, transformations of the aggregate state of substance behave to the first-order
transitions. For these transitions the discontinuous changes of the first derivatives from thermodynamics
potentials on the intensive parameters of the system (pressure and temperature) are characteristically.
One of such derivatives is the specific volume of a unit mass of a substance, but the density of a condensed
environment is used more often. Other such derivative is entropy, characterizing the change of degree of
efficiency of the system. Methods of statistical physics [1 - 4] allow determine these parameters for the
various aggregate states. Thus, thermodynamics potentials are first determined for every aggregate state,
and then value of density and entropy. Further a density and entropy are analyzed for the purpose the
estimation of points of phase transitions on a temperature and pressure.

Such statistical analysis does not give a complete answer for a question about physical nature of phase
transformation. Except transformations of the aggregate state of substance, the first-order phase transi-
tions are investigated and in other situations. It is possible to enumerate some examples: ferroelectrics
[5], magnetic systems [6, 7], and thin-films for sunny elements [8], theory of superfluidity [9], proteinous
and nucleic structures [10] and also many other physical systems [11 — 14]. Thus, model enough Hamil-
tonians are mostly used [15 — 17], actual for certain applications, and frequently not giving an answer for
a question about physical reasons of the first-order transitions.

Understanding of primary causes of phase changes in the condensed environments is impossible with-
out understanding of physical nature of changes of quality of the interatomic interactions due to electronic
and phonon subsystems at such transitions.

Such consideration is conducted in the article by the methods of quantum theory of the field as it
applies to the condensed environment. Exact expression is got for energy of condensate of crystalline type
at a temperature T' = 0° K. The feature of the got energy is that it contains dependence on a temperature
as factors of Fermi-Dirac, and also on two types of interatomic interactions. One of them is characteristi-
cally for crystals and other for liquids. As shown in the article, a competition between these interactions
at the change of temperature determines the contribution of electronic subsystem to the temperatures of
phase transitions.

2. Materials and methods. Basic condensate energy and preliminary analysis

The operator of the electronic subsystem of the monoatomic condensate looks like in the particle
number representation [18, 19]:

H= epbiabm ==Y D > Qffn brabym + %ZZ SOS VIl bbbty (1)
fn 1 gm

fn fn gm f'n/ g’ m’

This presentation can be used for not monoatomic condensates as a zero approximation. A double
stroke near the signs of adding up means absence of element n =1 = m.
The matrix elements of operator (1) have such determinations:

2
e ={pr () = 2h_mA’” —2q(r)es (0), Qfm = (e @)la(r —1) lpym (r));
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VIS = (o (1) gom (£2)]g (11 = a]) |05 (12) 0y (¥1)).

Here and further everywhere it denotes: ¢ (r) = €2 / 7. The wave functions of single-electron ion of atom
corresponding to the examined condensate were denoted ¢sn (r). The standard set of quantum numbers
of hydrogen-like ion was denoted as f, and n is a spatial vector centering a wave function in accordance
with property: ¢ra (r) = ¢ (r — n). In crystals this vector coincides with the crystalline grate vector. In
other cases it determines spatial position of atom. An operator (1) corresponds to the crystal that is at
a zero temperature.

The creation (annihilation) operators b;n (bfn) of the electronic states operate on a function
|. .., Nfn, ...), the variables of that there are occupation numbers N¢,. They take on only two values
0 and 1. Those operators operate on the electron state functions as:

bial ooy Nymy o) = (=17 (1= Ny ooy 1= Ny, o s
bale s Npny oo )= (=17 Nyalo .o s 1= N, )

The parameter oy, is equal to the number of the states with energies below than energy of the state
of fn. Also next properties of the creation and annihilation operators are valid:

binbal - s Npmy o) = Nyaloo oy Ny, o2, (2)

and

brabim + U mbin = 07g0nm:  bynb bpa =0, bh bl +binbh =0, (3)

gm+bgm fn’gm gm” fn

At a zero temperature electronic configuration of vacuum will be realized:

0) = 17...71707...707...>. (4)

Here N, is the total number of electrons in a condensate that occupy the lowermost energy states.
Equation (2) for the vacuum state |0) can be written as:

0)
biabsal0) = Nj 10). (5)

Here N /(:(31) marks set of the occupation numbers that describe the vacuum state. The equality takes
place:

1,if f < w;
N(O): ’ = U
fn 0,iff > c.

Here v denotes the valence zone and c is the conductivity zone. It is obviously that the factor NV }(31)
depends on the zone quantum states so, that reproduces Fermi-Dirac distribution at a zero temperature.

It is necessary to execute the averaging [20-22] of the operator (1) on the functions (4) for determi-
nation of internal energy of condensate W = <O|ﬁ |0} and to add to the result the effective energy of the
direct coulomb cooperation between nucleus. It is possible to get expression for the internal energy of

crystal with help the commutation relations (3) and property (5):

W=22>"/q(In—ml) z@Z ZN(O QZ/ZN(O NG KL~ Z/ZN(O NG RL?

nm fg nm fa

And also such denotations are used:
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Qlhn = / & (c— ) g (r — m|) oy (£ —n) dr;
©0)

vissl = / dr / &5 (r1 — 1) @ (ra — m) g (|11 — 1)) gy (v — m) oy (11 — 1) dry;

visly, = / &r / & (01— 0) @, (r2 — m) g (11 — 1a]) g (22 — 1) oy (01 — m) dry.
(o0) (o0)

If a crystal is ideal (endless and defect-free), then energy over can be brought to the form:

W= ZQZ/ (jn—m|) ZEZ ZN(O ot Z/ZN(O N(O ng _ Z/ZN(O N(O R]{{QH17

nm fg nm fg

Here such denotations are used:

Qul = / & (0 g (r +n— ml) gy () dr;
(o0)

Kl = f d3P2 f ¢} (1) ¢y (r2) g ([ri —r2 +n—ml) ¢y (r2) ¢ (r1) dry =

E(f) (bz nfmfr(bg ( )ds

R, = /dﬁ‘rz/so}(rl)so;(rz)q(m—r2+n—m|>sof<r2+m—n>wg<r1+n—m>d3r1.
(o0) (o0)

In an ideal crystal it is possible also to avoid one adding up in the double sums. We will define energy
on one atom as: w = W /N,, where N, the number of atoms in the basic area of crystal and will get:

P INES RO WA LD LTS DL V) ST

n(#0) n(#0) n(£0) n(£0)

Here such denotations are used:

QL= | ¢ (@ q(lr+nl) ¢y (r)d’r; (7)
(o)

Kig= [ d3r2 f ¢} (r1) @y (r2) q(ri —r2 +nl) gy (r2) @y (r1) d°ry =

(50)
8
= [ ¢ (1) Q] vy (r) dr; o
(50)

RIg = / &, / 7 (01) @ (v2) q ([r1 — 12 + 1) oy (r2 — ) 9y (4 + ) dBry. 9)

(o) (o)
The Coulomb energy q(|n|) = ¢ /|n| depends on the modulus of the vector n. One can show, using
the definitions (7) and (8), that the matrix elements Q7 and K9 also depend on |n|. In this sense, they
are centrally symmetric and provide only an isotropic bond between atoms, characteristic for liquids. In

contrast, the matrix element B¢ depends on n as on a vector. That is, it depends on all its components,
and makes an anisotropic contribution to the interaction, highlighting the crystallographic directions.
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With account of separation of the matrix elements into centrally symmetric and anisotropic, we in-
troduce the notation:

gs=» a(nl); Qb= QL K=Y Kl Rfi=) Ry (10)

n(0) n(40) n(0) n(#0)

The subscript “S” indicates energies corresponding to centrally symmetric (liquid) contributions. The
“A” index indicates energy corresponding to anisotropic (crystalline) contributions.
All the energy (6) then reduces to this form:

2

w:ziqS—ZEZQgN(O 2ZKf9N(O Ng(% _Z ngN(O)N(O)
f fg

Taking into account that the factor N (0) actually represents the Fermi-Dirac distribution at zero

temperature, for a nonzero temperature thls energy will have the form:
0’7%%—%z}ﬂN@+fE:K“N”N”—_EZMWWTNW. (11)

Since semiconductor type condensate is considered, only the highest valence band f = v and the
lowest conduction band f = ¢ are thermally active. Then it can be shown that:

1, if f<u,
ND i p—y
N = e ’ 12
10 NG it f = 1)
0, if f>e¢,
where
N 1 N 1
v B, ’ c B.— .
1+exp< “) 1+exp<T")

Here 1 is the chemical potential restricted by condition: F, < p < FE.. If a crystal is ideal (without
admixtures), then with the good degree of precision the next value takes place: p = % . Expressions
are just as a result:

(T 1 S 1
Y T e (B 0 Trew (G

Obviously, that in this case is always executed condition: qu€> + N, (0 = 1. As inequality FE. > F, is
too executed always, then with the increase of temperature from 0 to infinity the factor N, c(O) increases
too, but from 0 to 1/2. The factor N%), vice versa, decreases from 1 to 1/2. Based on this, it is more

suitable to choose a factor N, (0 for analysis. Then expression (12) takes the form:

1, if f<u,

T 1—N£5)7 if f=ur,
NP =S e T (13)

0 if f=c¢,

0, if f>c

As a result the energy (11), with account the definition (13), takes the form:
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w(T)=z22qs—2% QL+1 S K -1y S RIgt

f<v f<u g<v f<v g<v
+{z@ Qs — Q%)+ f; (Kg _ Kg) _ f; (RfAc _ Rﬁf) }N£>+ (14)

2
v cC ve VU CC v C T
{3 (K% + K% = 2K%) — 5 (R + R — 2R%)} (Nc(o))
Also next symmetries of matrix elements are here taken into account: K9 — K9 RS — RI that
will be realized in the conditions of ideal crystal.
Further it is convenient to introduce the notations, which add to the expressions (10) and slightly

reduce the analysis:

@:=3al= T k=Y % [wimalrtuler @ (15)

f<v f<vn(#0) Fsvn(#0)5)
K=Y YK=Y Y Y ih=Y Y Y [amelwmes 9
f<vg<v f<v g<v n(#£0) fgyg<l/n(7£0) )

Ra= Y “RY=Y ¥ ¥ Rig=

f<vg<v f<vg<v n(#O)

—Z Z Z f 312f f 11 ¥ (12) (|11 2 |) f(2 ) 9(1 ) 3 15
f g I np)eeir n)pg(r n)dr
f<l/g<l/n(7£0)(oo)

=y (k- k)= 3 | [ etmademdn- [amal e ma|i 0y

J= J=ra(z0) \() (c0)

f<v
=X | X f dra [ ¢ (r)e;(ra)q(rs —ra+mn|)¢p (r2 —n) g, (r1 +n) dry — (19)
F<v \n(#£0) (o) (c0)
-> d3r2 f @y (r1) ey (r2) q(Jre —r2 +nf) r (r2 —m) ¢, (r1 + ) dgrl) ;
n(#0) (c0)

— (@ — 1
TY=N.g' = . 20
77( ) c0 1 exp( ril? ) ( )

Then the energy (14), with account of these notations into account, takes the form:

w(T) = zpqs — 2:Qs + 3Ks — 3Ra + {2 (Q% — Q%) + vY — pIn (T) +

1 v ce ve 1 v ce ve 2 <21>
5 (K¢ + K§ —2K%) — 5 (R + R —2R%) b (T)

The matrix elements Q%, Q%, K'¢, K%, K'y, RYY, R%, R are defined by the general relations (10)
using (7) = (9).

3. Results and discussion. General analysis of the problem

Equation (21), taking into account (20), describes the influence of an external thermostat on the specif-
ic internal energy w (1) of a monatomic condensate. Since the factor n (1), defined in (20), also increases
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with increasing temperature, it can be regarded as an overdetermined temperature. The dependence of
the energy (21) on the factor 5 has a parabolic form:

0 1 cu 2 2
win) = (U9 = /2 Ra| + 0§ = o5 [+ [0 + U] (22)
This form is convenient for qualitative analysis. Next denotations are here used:
v =22 1/2)Ks — 2Qs; UY) = 2.0% + 7% — 2.Q%; 23
S —ZnQS‘f’( / ) S Z@QSa S —ZEQS+HS Z@QSa ( )
2 v cC ve 2 J— vC VU CC
U = (12 K+ (/2 K% - K% U = R — (1/2) RY - (1/2) R (24)

The terms R 4 and p%? were given in (17), (19).

For the definiteness of the subsequent analysis were held qualitative estimates of all six quantities
U Ry, UL per, U and U entering into the energy (22) and determined in (7) = (9), (10), (15) =
(19), (23), (24). These estimates were based on the approximation of the far zone ({|r], |r{], |r2|} << |n|)
in integrals of the type (7) = (9). Such approaching is possible for quality estimations due to that in these
integrals there are hydrogen-like wave functions that quickly (exponentially) decrease at |n| — co. Then
in this approaching by all dependences on |r|, |ry|, |r2| it is possible to neglect if they appear together
with |n|.

All the centrally symmetric energies U (;)7 U g) and U g) are reduced to a combination of factors: 1/|n|,
and all the anisotropic energies R4, p%’ and U (j) are reduced to a combination of factors of the form:
@t (—n) ¢4 (n)/|n|, where the indices of state f and g take the values v (valence band) or (conduction
band).

In particular, for a semimetal such as boron, valence band in the simplest case is determined by 2p,,
2p, states with wave functions:

o, (n) = A |n|exp (—%) sin (0) cos (¢);  @u, (n) = A [n|exp (—%) sin (0) sin (), (25)

and the conduction band is determined by the 2p, state with the wave function:

we(n) = (A/\/i) p exXp <—|—I21|> cos 0, (26)

where A = (6/aB)3/2/(8\/E) and ap is the Bohr radius. In fact, all three states are defined by a su-

perposition of the functions (25), (26) under the dominance of one of them. These functions have an
odd symmetry in the sense of equality: ¢; (—m) = —¢ (n). With account of this, we can estimate the
coefficients at the powers of 1 on the right-hand side of (22) with respect to the functions (25), (26). In
the far-field and nearest-neighbor approximation, and also under the assumption that z,, = z. = z, one
can obtain the following estimates:

| Nae? (22 4+ 20,2, v, (0) 0, (m)

[Ugo> —(1/2)Ra| = o ; (27)
Y Naez'@jﬁpvz’ () {2Z¢c (n) — 2y, Pu; ()
SRS ( 2] ); (28)
L,] =
)
Y & (25 o, () — 250, (0))
|:ng) + U(AQ):| _ Z Na ( Ui%pyzi|n)| cSDC ( )) ) (29)

Here, 27, are the estimated parameters, which, like 2, and z., can have the meaning of effective charge
numbers.
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0.26

w(n)

T e L 1 | 1

Fig. 1. The dimensionless representation of the energy w (n) in units of N,Ry, where Ry is the Rydberg
energy. For illustration, dimensionless parameter values were chosen: wg = 0.25 and ws = 2.5. For the
parameter w1 we took the values wy = 0.25 (curve 1) and wq = —2.5 (curve 2).

The second term in the numerator of the right-hand side of (27) can be negative in some
directions. Indeed, if we take into account the definitions (25), then this term has the form:

z;*mz;*yAz In|? exp (—|n|) sin® (9) sin (24,0)/2. This function has a pair of opposite directions: ¢1 = 37 /4,
@y = Tmw/4, where the second term in the numerator of the right-hand side of (27) is negative. Then
in these directions the right-hand side in (27) has a minimum by the spatial variable |n|, and the en-
ergy at the minimum point is negative: [U(,;) —(1/2) RA} = —‘ [U(,;) —(1/2) RA} ‘ That is, it corre-
sponds to the bound state. In reality, when the superposition of states (25) and (26) is realized, there
is more of such a pairs of directions and they determine the crystallographic directions. In the direc-
tions ¢1 and o the right-hand side in (28) is uniquely positive. That is, the condition is always ful-

fied: [0~ p] = [0 = o]

component can take small negative values (in Fig. 1 - curve 2). Finally, the right-hand side of (29) is

. This is fair for boron. But if we consider other substances, this

always positive, because always (2} ¢, (n) — 27, (m))2 > 0. That is, the equality is always fulfilled:
2 2 2 2

0] - [0 5]
Denoting further:

wy = HU<S0> —(1/2) RA” S0 w = Hng — o]

> 0; wQEHUg)JrU(Z)”>O7

the internal energy (22) can be represented in a compact form: w (n) = —wy + wyn + wyn?.

Figure 1 (curve I) shows an illustrative graph of the energy dependence of w ().

The parameters were chosen so that the point w(n) = 0 (in the figure, point A) was sufficiently far
from the value n = 0.5 (this value corresponds to an infinitely high temperature). The condition w (n) = 0
determines the value of the parameter ,, which corresponds to the temperature of the liquid-gas phase
transition. As this temperature is finite, then points A and A’ on a Figure 1 represents approximate
physical positions of such values on an axis 7.

It is also quite obvious that the crystal-liquid phase transition must be determined by the condition of
"switching off"the anisotropic contributions. It follows from the definition (22) that the "switching-off"of
anisotropic contributions should be related to the condition: U (j)nz —p5'n—(1/2) R4 = 0. This determines
a certain value of the factor i (and the corresponding temperature) for the crystal-liquid phase transition.
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Conclusions

In the article the exact expression for the internal energy of the condensate as a function of temperature
was obtained. In particular, the exact value of the internal energy of condensate was obtained, as a func-
tion of temperature (only the electronic subsystem was taken into account). This dependence is completely
determined by the Fermi-Dirac factor: n = 1/(1 + exp (F,;/2kT)) (where FE, is the energy gap width).
The internal energy, as a function of this factor, has a sufficiently simple form: w () = —wo 4 win+wan?.
At zero temperature (7 = 0 ) the condensate is an ideal crystal. This energy contains two types of inter-
actions. These interactions contains in the coefficients wq, wy, wy. Competition between them result in
structural changes in the type of the phase transitions in the condensate when the temperature changes.
On the one hand, these interactions are defining only an isotropic bond between atoms, what is charac-
teristically of liquids. On the other hand, they contribute an anisotropic component into the interaction,
define crystallographic directions and provide a crystal structure.
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