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The paper discusses the possibility of realizing a superconducting state at temperatures of
~102 K in layered nano-sized heterostructures — thin-film objects consisting of alternating layers
of metals and semimetals (or semiconductors) with a thickness of (1-10%) nm. The numerical
estimates show that in such structures, an increase in the electron density in semimetals (semi-
conductors) leads to a change in the electrical conductivity up to the appearance of superconduc-
tivity. If we assume that superconductivity is realized as a result of electron-phonon interaction,
causing the formation of Cooper electron pairs (Bardeen—Cooper—Schrieffer mechanism), then
an increase in the electron density in the semiconductor layer of a nano-sized heterostructure
should cause an increase in the pairing constant and so-called high-temperature superconduc-
tivity can be realized.
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BucokoremneparypHa eJeKTpUYHA HAAINPOBIAHICTH mIApYyBAaTUX HAHOPO3MipHUX
“rerepoctpykryp”’. IO. I. Boiixol, B.B. Bozoarnosl, P. B. Bosk, Bb. B. I punvos

VYV pobGoTi 00roBOpPIOETHCS MOMKJIMBICTD peasiidarlii HAIIpPOBIIHOrO CTaHy IIPU TeMIepaTypax
~102 K B ImapyBaTHX HAHO-DO3MIPHHX «T€TEPOCTPYKTYPAX» — TOHKOILIIBKOBHX 00€KTAaX, IO
CKJIAIAI0THCS 3 IITAPIB MeTAJIiB 1 HamriBMeTaJ 1B (200 HAMBIPOBIIHUKIB), 1[0 Y€ PTIYIOTHCS, TOBIITHHOO
(1-10%2) M. 3BpobiteHi UMCIIOBI OIHKM IIORA3YIOTb, N0 y TAKHX CTPYKTYPAX BiIOyBaeThCS
MIIBUINEHHS €JeKTPOHHOI I'YCTHHHW Yy HaIlBMeTasaX (HAMIBIIPOBIOHMKAX), IO Bede I0 3MIHH
€JIEKTPOIPOBIIHOCTI OCTAHHIX J0 IIOSBM HAIIPOBILIHOCTI. fIKIITO BBa)kaTH, II0 HAIIPOBIIHICTH
peasi3yeTbcs B pe3yJbTaTl eJeKTPOH-(OHOHHOI B3aeMOJIl, IO 3yMOBJIIOE (OPMYyBAHHS
KyIepiBCcbKUX map esieKTpoHiB (mexaHiam bBapmaina-Kynepa-lllpuddepa), To 306iabImeHHs
TYCTUHH €JIEKTPOHIB y HAIIBIPOBIIHUKOBOMY Iapi HAHO-PO3MIPHOI «reTepoCTPYKTYpPH» Mae
3yMOBUTH 301JIBINIEHHST KOHCTAHTH CIIAPIOBAHHA 1 MOYKE peasidyBaTHCS ‘BHCOKOTeMIleparypHa’
HAIIPOBIIHICTD.

© 2024 — STC “Institute for Single Crystals”

1. Introduction

Currently, active research is being con-
ducted into electrical superconductivity (prac-
tically zero electrical resistance) of nano-sized
structures, that is, objects whose characteristic
linear size is ~(1-10%2) nm. In particular, su-
perconductivity is realized in samples formed
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from thin films of various substances (layered
“heterostructures”) at the contact of layers of
dissimilar metals or contact of metal-semicon-
ductor layers, etc. [1-4]. There is no unambigu-
ous explanation of the microscopic mechanism
responsible for the manifestation of this effect
in the mentioned objects.
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This paper discusses one of the possible rea-
sons for the realization of the superconduct-
ing state in nano-sized “heterostructures”, the
characteristic size of which R (thickness of an
individual layer) is comparable with the depth
of penetration of electrons into the substance
0 (shielding length), that is, R=6. According
to the Thomas—Fermi model, for metals, the
value § is <1nm, and for semiconductors and
semimetals, 6>102nm. At the same time, in
our consideration, it is assumed that the main
mechanism of superconductivity is the Bardin-
Cooper-Shriffer mechanism (the BKS mecha-
nism), based on the idea that superconductivity
is realized as a result of electron-phonon inter-
action, which causes the formation of quantum
particles — Cooper pairs of electrons (bosons),
capable of carrying an electric charge without
loss of energy [5].

2. Quantitative assessment of some
parameters of the electron energy
spectrum in layered nanoscale “het-
erostructures” with a characteristic
size R (layer thickness) comparable to
6 (shielding length)

As a simplified model, we will consider a
sample of a “heterostructure” containing two
layers of different substances: metal-semicon-
ductor or metal-semimetal (non-degenerate
semiconductor), which are separated by a thin
layer of dielectric with a thickness of d~3a (a is
the crystal lattice parameter of the interlayer
substance). As a rule, the dielectric layer is an
oxide of the contacting substances.

In the structure under consideration, as a
result of a significant difference in electron den-
sity in the contacting layers, a redistribution
of electrons occurs, leading to the emergence
of a contact potential difference U. Obviously
the considered model is a flat capacitor. In this
case, in the areas adjacent to the interface be-
tween the layers, electric charges accumulate,
the surface density of which is described by the
relation:

o=eUl/d. (1)

Here, ¢ is the dielectric constant of the layer
that separates the main layers of the hetero-
structure. Accordingly, the value of the total
electric charge arising in each layer is equal
to g = (eU/d)S, where S is the area of the in-
terface between the layers of the heterostruc-
ture. The appearance of the specified electric
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charge causes a change in the electron density
An = NIV in each layer. Here N = g/e is the
number of electrons in the layers due to their
redistribution in the heterostructure, e is the
charge of an electron, and V is the volume of
the layer.

To quantify the relative change in electron
density, we use the dimensionless parameter:
X = An/ng, where ny =~ 1/Q is the maximum pos-
sible density of free electrons in a substance
(metals), Q is the volume of one atom.

Taking into account the above relationship
for ¢, as well as the fact that the volume of the
layer V= SR, we have:

x~eUQ/deR. (2)

Substituting numerical values of constants
into equation (2) and assuming that U~ 1v and
R = 6, we obtain: x=1 (for a metal layer) and
x~10~2 (for a semiconductor or semimetal layer).

Thus, the conducted assessments allow
us to draw the following conclusions. In lay-
ered nano-sized heterostructures, the electron
density in metal layers remains virtually un-
changed (=1 %). However, in a semiconductor
or semimetal layer, despite the small value of
the parameter ¥, the electron density can in-
crease significantly. Indeed, ny~ 1029m=3, and
at x~1072, we have n~1027"m™3. This is three
orders of magnitude higher than the electron
density in semiconductors or semimetals in the
initial state, i.e. before the formation of a lay-
ered nano-sized heterostructure (1024 m=3 [6]).
Therefore, there is every reason to state that
in the heterostructures under study, electrical
conductivity can change significantly, up to the
manifestation of the effect of high-temperature
superconductivity.

3. Estimation of the temperature T,
of the transition to the superconduct-
ing state of layered nanoscale hetero-

structures

According to the BKS theory, the tempera-
ture T, of the transition to the superconducting
state is described by the following relation:

T,~0 exp (-1/n). 3)

Here 0 is the Debye temperature, p < 1 is the
electron pairing constant. For metals and
metal alloys 6 = 300K, p~(0.1-0.3), so, T,~(10-
40)K, which is in good agreement with the
experimental data.

The value of the pairing constant p de-
pends on the density of states n* in the energy
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spectrum of electrons in the vicinity of the
Fermi energy level Ep:

p=n-¢. (4)

¢ is the potential of the electron—phonon inter-
action, which determines the formation of Coo-
per pairs of electrons.

Using Fermi—Dirac statistics, it is easy to
verify that n*~ N/Eg, where N is the number
of energy states determined by the total num-
ber of electrons [7]. Accordingly, taking into ac-
count that Ey ~ n?3 ~ N2/3, we have: pn ~ nl/3.
Therefore, an increase in the electron density
in the semiconductor layer of the nano-sized
heterostructure by three orders of magnitude
should lead to an increase in the pairing con-
stant by approximately 10 times compared to
metals, i.e. to reach a value of p~=3.

For such values of pairing constant (u > 1)
the transition temperature to the supercon-
ducting state T, is described by the following
relation [7]:

T.~0.2:6-u'2. (5)

Thus, since the Debye temperature in semi-
conductors and semimetals is the same order
of magnitude as in metals =300 K, then in the
considered version of the layered heterostruc-
ture, T, can reach a value ~102K, which is an
order of magnitude greater than in metals, that
is, the so-called high-temperature superconduc-
tivity can be realized.

Another important aspect of this problem
should be noted. In the case of superconduc-
tivity by the BKS mechanism, an important
parameter is the coherence length, which is
interpreted as the size of the Cooper pair. Ac-
cording to various estimates, { is <10%Znm.
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Therefore, in the heterostructures under con-
sideration, superconductivity as a result of the
appearance of Cooper pairs (the BKS mecha-
nism) can be realized.

4. Conclusion

Based on the presented assessments and
discussion, the following conclusion can be
drawn. Nano-sized layered heterostructures
formed from contacting “metal-semiconductor”
or “metal-semimetal” layers with a characteris-
tic size (layer thickness) R~10% nm are capable
of realizing a superconducting state at temper-
atures >10% K, which is about 10 times higher
than in classical metals. At the same time, the
resulting contact potential difference between
the layers must reach a value >1V.
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