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Resonance properties of the lattice of rod-like nanoparticles are studied in the local field
approximation; the characteristics of single nanoparticles are calculated within the framework
of the equivalent spheroid approach. According to the results of the calculations, a blue shift of
the maxima of the imaginary part of the effective transverse polarizability for the square lattice
of nanocylinders with a decrease in their effective aspect ratio was established. The imaginary
part of the effective transverse polarization of the lattice of cylinders is four orders of magnitude
greater than the corresponding value for a single cylinder. The lattice resonance frequency in-
creases when metals with a higher plasma frequency are used or when the lattice is placed in a
medium with a lower dielectric constant. The obtained results indicate a significant influence of
the size, shape, and material of rod-like nanoparticles, as well as the surrounding medium, on
the frequency dependence of the imaginary part of the effective transverse polarization of the
lattice. The possibility of controlling the lattice resonance frequency by changing the effective as-
pect ratio of the nanoparticles forming the lattice has been demonstrated. The strong interaction
between the constituent elements of the lattice leads to an increase by four orders of magnitude
in the imaginary part of the effective transverse polarizability and the absorption cross section
of the lattice in comparison with a single nanoparticle.

Keywords: effective polarizability, lattice resonance, lattice sums, effective relaxation rate.

EdexTusHa nosispu3oBHicTh Ta ONTHUYHI pE30HAHCH KBAJAPATHOI I'PATKH METAJIEBUX
CTPUIKHENMONIOHMX HAHOYACTHHOK HAa giejiekrpuuHin migkiaanui. H.I1 Iasnuwe,
A.B. Kopomymn, B.Il. Kypbauvruii, P.JO. Koponvkos

Pesonancui BacTHBOCTI IpATKM CTPUIKHEIOMIOHUX HAHOYACTUHOK JIOCJIIKYIOTBCS B
HAOJIMKEeHH] JIORAJIBHOTO TI0JIST, XapaKTEePUCTUKHU IT00JHHOKUX HAHOUACTHHOK PO3PAXOBYIOTHCS B
paMEKax IiIX0Iy eKBIBaJIEHTHOro cepoima. 3a pesyabraTaMu PO3PaXyHKIB BCTAHOBJIEHHUI CUHIN
3CYyB MAKCHUMyMIB YSIBHOI YaCTHHM e()eKTHBHOI IOIIEPEYHOl MOJIAPU30BHOCTI IJIA KBAIPATHOL
IpaTKM HAHOIMJIHAPIB 31 3MEHIIeHHSM IX e(eKTHBHOIO AaCIeKTHOTO BIJTHOIIEHHS. ¥YsIBHA
vyacTuHa e(eKTUBHOI IIOMePevYHOl MOJIIPU30BHOCTI IPATKU IUIIHAPIB HA YOTHUPU IIOPSIKU
TIEPEBUIILYE BIIIIOBIIHY BEJIMYUHY JIJIs ITOOJWHOKOTO IMUIIHApA. JdacTora IpaTKOBOTO PE30HAHCY
301JIBIITY€ThCS IIPU BUKOPUCTAHHI METAJIIB 13 O1JIBIIO0 IJIA3MOBOIO YACTOTOK 200 IIPX PO3MITIEHHT
IPATKU B CEPEIOBUII 3 MEHIIOI JTI1eJIeKTPUYHOI0 MpoHuKHIcTI0. OTpuMaH] pe3yJibTaTh CBIIUYATh
PO CYTTEBUM BILIUB PO3MIpPIB, pOPMHU 1 MaATEPlaly CTPUIKHENOMIOHNX HAHOYACTUHOK, a TAKOK
OTOYYIOUOTO CEepPEeIOBUINA HA YACTOTHY 3aJIEKHICTh YSIBHOI YacTHHU edeKTUBHOI IIOIIePeYHOI
TOJIIPU30BHOCTI IpaTku. lIpogeMOHCTPOBAHO MOMKJIMBICTH KEPYBAHHSI YACTOTOI IPATKOBOTO
pe30HaHCY NUISIXOM 3MIHHU e(DEeKTHBHOIO aCIIEKTHOTO BITHOIIEHHS HAHOYACTUHOK, 1110 YTBOPIOIOTH
rpatry. CuabHA B3aeMO[IIsT MIK CKJIAQJIOBUMH €JIeMEeHTAMU IPATKU IIPU3BOAUTH 10 301IbIIeHHS
HA YOTHPHU IOPAIKH YABHOI YACTUHU e(EKTUBHOI II0IIePedHOl IIOJAPU30BHOCTI 1 Iepepisy
TMOTJIMHAHHS IPATKU Y TOPIBHAHHI 3 ITOOJJUHOKOK HAHOYACTHHKOIO.
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1. Introduction

Oscillations of the conductivity electrons of
a metal nanoparticle, excited by an external
electromagnetic field, lead to the emergence of
a localized surface plasmon resonance (SPR).
During the resonance, the electric field in the
region near the surface of the particle is ampli-
fied. The field amplification and the subwave-
length nature of the localized SPR can be used
to regulate the attenuation of the spontaneous
radiation of nanoemitters [1], to control non-
linear effects such as second harmonic genera-
tion and Raman scattering [2,3]. However, due
to strong radiation attenuation, SPRs have a
large spectral line width and a low Q factor [4],
which complicates their possible application.

If nanoparticles form an array, the interac-
tion between them can cause additional reso-
nances. In particular, when the period of the
array is of the order of the resonance wave-
length, the combination of diffraction on the
array with the SPR of each individual particle
leads to a collective resonance, which is called
surface lattice resonance (SLR) [56-9].

The width of the surface lattice resonance
lines in arrays of plasmonic nanoparticles de-
pends on the angle of incidence and is much
smaller than the width of the SPR line of an in-
dividual particle. These features make periodic
arrays of metal nanoparticles attractive for
practical applications and convenient for SLR
setup. In particular, surface lattice resonance
was used to collect light [10], to control radia-
tion [11-13], to arrange a strong interaction of
light with matter [14—16] and for plasmonic
generation [9,17-20]. Recently, SLRs have been
implemented in magnetoplasmonic responses
of magnetic nanoparticle arrays [21, 22] upon
excitation of the dark mode in arrays of asym-
metric dimers [23] and superlattice plasmons
in arrays of gold particles [24].

The optical properties of lattices of metal
rod-like nanoparticles on a dielectric substrate
depend on the characteristics of individual par-
ticles. Finding the frequency dependences of
these characteristics is a non-trivial task, vari-
ous aspects of which were considered in [25-
28]. For description of nanoparticles of differ-
ent shapes (elongated and flattened spheroids,
cylinders, spherocylinders, discs, bicones, and
bipyramids), the equivalent spheroid method
was applied [29]. The results of the calculations
are in good agreement with the experimental
data, so the same approach is used in this work
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Fig. 1. Geometry of the problem

to find the characteristics of individual rod-like
nanoparticles.

There are numerical models for calculating
SLR characteristics, such as the discrete dipole
approximation [30, 31], but there remains a
need for transparent, understandable ways to
determine the structure of SLR modes. There-
fore, the study of resonant optical phenomena
in lattices of rod-like metal nanoparticles is an
urgent task.

2. Basic relationships

Let metal nanorods of length [/ and radius
form a square lattice with the period ¢, on a di-
electric substrate with permeability ¢, (Fig. 1).
The dielectric constant of the surrounding di-
electric medium is €_. We apply the local field
approximation [32] to study the optical proper-
ties of the system. In this approximation, un-
der the condition of normal incidence of light
on the substrate, the transverse component of
the effective polarizability tensor of the lattice
of rod-like nanoparticles is determined by the
relation
€ (w) —€,
— — , (1)
Le (w)—l— (1 - EL)em
in which the renormalized depolarization fac-
tor has the form

L=L -V, @)

where V is the volume of the rod-shaped
nanoparticle,

$, =2 {sfﬁd_emsj], ®)

3
1 ™m €d_’_em

1 —
latt

S? and S| are lattice sums, which are deter-
mined by the interaction of the nanorods with
each other and with the image dipoles.

The lattice sums are calculated according to
the formulas [33]

x  2n’-n’
SN v
Ty =—00 . Y
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Table 1. Geometrical parameters of rod-like nanoparticles (@ and b are the major and minor semi-
axes of the spheroid; R and [ are the radius and length of the cylinder (spherocylinder)) [25]

Shape Dimensions Aspect Effective aspect ratio, Vol v
: olume,
longitudinal transverse ratio, o Octr
Prolate
spheroid 2a 2b & —rab®
Cylinder l 2R 2R/1 ﬁg nR’l
2
1
3) 2
468+6+Z
Sphero- 14+ 2=
: [+2R 2R S 2 4
cylinder 3 6+ 2 wR*|l+—R
l+2R 15 3
d=1-p
= —2nl+nl+(2z/aq) where ((z) is the Riemann zeta function,

SLL = Z 5/2 (5)
N,y =—00 (nf + ni + (220 /al)z)

where n_ and n, are the numbers of rods in

the two-dimensional lattice along the axes x

and y; z, is the distance from the image di-

poles to the surface of the substrate.

The most convenient is the method of calcu-
lating sums (4) and (5) using rapidly converg-
ing series. Representing the lattice sum (4) in
the form

- 1
Sld =2 2 2 \372
Ny Ny =—00 (nx + ny)
. 2 ©®)
-3 ny

9 )5/2

nymy=o0 (nf +n’

and taking into account the known relations
[33]

2
2 n
y

o=

5/2
N,y =—00 (ni + ni)

2 , (D
_ 32w > mlK, (27memy)
my,my, =1
o0 1
= 2((3), (®)
N,y =—00 (nx =+ ny)
we obtain
SLd —4 C(3)_8ﬁ2 i me2 (ZTmemy) , (9)
my,my,=1
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((3)~1,202; K, (x) is the Macdonald func-
tion of the v -th order.

Similarly, the lattice sum (5) written in the
form

: o 1
S =

2 2 2192 B
o, =00 [nx +nl+(2z,/a)) ]
) 2 . (10)
_3 nx

. R
i o2 o+ (22,
if taking into account the relations [33]

o 1
Z 32

nn [k 4l o+ (22, /) |

Ta /mf+m§K1[4ﬂz—°,lmf+mf]
q

Zo my,my=1

=) 2
> G
52

Rty ==00 [nz + ni + (220/al )2}

2
l[ﬂ—al] Z m:(mf+m;)Kz[4ﬂ

m,,m, =1

(11

12)

2y

al
takes the form

™

;T & Z

Sl=—L JmZ+m? 1K |47 =2 m? +m?
€L ZO MX;ZI x y 1 a x y
TQ;, o 2 2 Z 2 2 13)

_me,lmx +m; K, [4ﬂ;(;,lmx +m; }
In the equivalent spheroid method [25], the
depolarization factors of rod-like nanoparticles
are determined by the effective aspect ratio

2 2
Jm, +m;
0
1
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(Table 1). This value is found from the condi-
tion of equality of the ratio of the longitudinal
moment of inertia to the transverse one for a
rod-shaped particle and an equivalent prolate
spheroid. Expressions for depolarization fac-
tors have the form

L :%(1_4\);

. (14)

2 2
_ 0 1+y1-q e
4\ - ffz 372 In fo —2{1- Qesz
2(1_Qeff) 17\/179eff
Within the framework of the Drude model,

the transverse component of the dielectric ten-
sor is

2
w

ef(w=e¢* ———m2—, 15

( ) w(eriﬂ{eLff) (15)

where ¢ 1s the fraction of interband transi-

tions in the dielectric function of the metal; ® »

is the plasma frequency; the transverse com-

ponent of the effective relaxation rate has the
form

Yeir = Vour + ’YsLurf + r\friad . (16)

In the right part of (16), the bulk relaxation
rate ~,, = const; the surface relaxation rate
and radiation attenuation are determined by
the relations

- =./ U—F , 17

’\{surf € 2R ( )
L Up

- 18

F\‘rad L 2R ( )

with parameters

2

9 L w, B
= || 7 19
) 166m+[;<1—6m){w] 71 (ew) (19)

//l:
3 2

1% L o © -

2] At e
c w

o0

128’K 1
e.le +|——1le,
EL

where the size-dependent function appears
[25]

2 (Qeff) = @1)
(1 - Q:fr )73 {2[% - gfrf ][% — arcsin Ot + O [Z - ij] \/1 - ‘g:r }

Equating the real part of the denominator
(1) to zero, we obtain an expression for the size
dependence of the lattice resonance frequency
of the nanorods array
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Fig. 2. Frequency dependences of the real (a)
and imaginary (b) parts, as well as the modu-
lus (c¢) of the transverse component of the lat-
tice polarizability tensor for a square lattice
of Au nanocylinders in Teflon: I — r =10 nm

, I1=50nm; 2 - r=10nm, [=150nm:;
8—r=10nm;4—r=20nm, [=150nm ;5
—r=40nm, [=150 nm .

wlatt,L - wp . (22)

€+ 1-£L ek €,
EL
Further, relations (1) and (22) are used to

obtain numerical results.

111



N.I. Pavlyshche et al. /| Effective polarizability and optical resonances ...

spherocylinder

prolate cylinder

spheroid

0 1 2 3
hw, eV

10'
10" |

lattice of cylinders

single cylinder

how, eV

Fig. 3. Frequency dependences of the imaginary part of the transverse component of the polarizability ten-
sor for lattices of Au nanoparticles of different shapes (a) and the lattice of cylindrical Au nanoparticles in
comparison with a single cylinder (b) at the r =10 nm , / =50 nm

2 2
10 T T 10
Pd a b
/ Pt | Tloz
Teflon
Lz
3 .
E 10 Air CaF,
10}
10° - - - -
0 1 2 3 4 5
ho, eV ho, eV

Fig. 4. Frequency dependences of the imaginary part of the transverse component of the polarizability
tensor for lattices of nanoparticles of different metals in Teflon (a) and lattices of Au nanocylinders in dif-

ferent dielectrics (b) at the r =10 nm ,

3. Results and discussion

Calculations were performed for rod-like
metal nanoparticles of different sizes. The
parameters of metals and permeability of di-
electrics used in the calculations are given in
Tables 2 and 3.

Fig. 2 shows the frequency dependences of
the real and imaginary parts, as well as the
modulus of the transverse component of the
lattice polarizability tensor for a square lattice
of Au nanocylinders. As in the case of single
nanoparticles, Reay,, (hm) is an alternating
function, but Ima;;, (hw) >0 in the entire fre-
quency interval studied. The results of the cal-
culations demonstrate that the change in the
size of the nanocylinders does not change the
qualitative character of the frequency depen-
dences, and the quantitative changes are insig-
nificant. Thus, as the length increases, a slight
decrease in the magnitude of the Imay,, (hw)

112

/=150 nm

Table 2. Parameters of metals [25]

Parameter

Metal -

s hw,, eV |~ ., 107 s~
Pd 2.52 9.7 13.9
Ag 3.70 9.17 2.50
Pt 4.42 15.2 10.52
Au 9.84 9.07 3.45
Cu 12.03 12.6 3.70

Table 3. Dielectric permeability of the sub-
strate (¢, ) and matrix (¢, ) [25]

Sub- .
strate Matrix

Si0, | Air | CaF, | Teflon | TiO, | C,,
2.25 1.0 1.54 2.3 4.0 6.0

Functional materials, 32, 1, 2025
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Fig. 5. Size dependences of the lattice resonance
frequency for lattices of Au nanocylinders of dif-
ferent radii (a), different metals (b) and in differ-
ent media (c)

function maxima, accompanied by their small
blue shift. In turn, an increase in the radius of
a cylinder results in a red shift of the maxima
and an increase in their magnitude. Therefore,
a decrease in the effective aspect ratio leads to
a blue shift with a simultaneous decrease in
their magnitude.

Fig. 3a demonstrates the similarity of the
frequency dependences of the imaginary part
of the transverse component of the polarizabil-
ity tensor for lattices of different rod-shaped
Au nanoparticles. The frequency dependences
in Fig. 3b indicate that the SPR frequency for a

Functional materials, 32, 1 2025

single cylinder and the SLR frequency for a lat-
tice of nanocylinders practically coincide, while
the ratio Imay,, /Imay, =210*; this fact can be
explained by the strong interaction of nanocyl-
inders in the lattice.

The frequency dependences of the imagi-
nary part of the transverse component of the
effective polarizability tensor for lattices of
nanocylinders of different metals and a lattice
of Au nanocylinders in different dielectric me-
dia are shown in Fig. 4. For cylinders of differ-
ent metals, the location of max{Im ufﬁtt} , which
correspond to SLR frequencies, are determined
by plasma frequencies. For a lattice of nano-
cylinders in different dielectric media, the fre-
quency dependence maxima shift toward lower
frequencies as the permeability of the medium
increases.

Fig. 5 shows the dependences of the lattice
resonance frequency on the effective aspect ra-
tio for lattices of Au nanocylinders of different
radius (a), different metals (b), located in dif-
ferent dielectrics (c). Note that at a fixed value
of the effective aspect ratio, the SLR frequency
increases with an increase in the plasma fre-
quency of the metal and a decrease in the per-
meability of the medium. The last fact can be
proved by calculating the derivative of wi™*
with respect to ¢ :

8w1att,L 1 1- Z —3/2 (23)
= | =, X
Oe,, 2 .
~ 2
1— A
s ﬁ_%sprq 1-2|—m <0,
L ae L] €+ €
since
~ 2
1— .
££L>%3f+3j 1-2|—=
R al 6m dh ed + 6rn

4. Conclusions

In the approximation of the local field, ex-
pressions for the frequency dependence of the
transverse component of the effective polariz-
ability tensor and the size dependence of the
resonance frequency of a square lattice of metal
rod-like nanoparticles located on a dielectric
substrate were obtained.

It was established that with a decrease in
the effective aspect ratio, there is a decrease in
the height of the spectral maxima of the imagi-
nary part of the transverse component of the
effective polarizability and their blue shift.
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The strong interaction of nanocylinders in
the lattice leads to a sharp increase in the val-
ue of the imaginary part of the transverse effec-
tive polarizability of the lattice in comparison
with its value for a single nanocylinder.

The calculated dependences of the lattice
resonance frequency on the effective aspect
ratio (size dependence) for lattices of nanocyl-
inders of different metals and in different me-
dia demonstrate a monotonous decrease in fre-
quency with an increase in the aspect ratio in
all cases. At a fixed value of the effective aspect
ratio, the lattice resonance frequency increases
with an increase in the plasma frequency of the
metal and a decrease in the permeability of the
medium.
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