Вы здесь

Funct. Mater. 2013; 20 (1): 29-36.

http://dx.doi.org/10.15407/fm20.01.029

Luminescence spectroscopy and electronic structure of Eu3+-doped Bi-containing oxide compounds

S.Nedilko[1], V.Chornii[1], Yu.Hizhnyi[1], V.Scherbatskyi[1], M.Slobodyanik[1], K.Terebilenko[1], V.Boyko[2], V.Sheludko[3]

[1]T.Shevchenko National University of Kyiv,64/13 Volodymyrska Str., 01601 Kyiv, Ukraine
[2]National University of Life and Environmental Science of Ukraine,15 Geroiv Oborony Str., 03041 Kyiv, Ukraine
[3]Glukhiv National Pedagogical University, 24 Kyjevo-Moskovs'ka Str., 41400 Glukhiv, Ukraine

Abstract: 

The photoluminescence (PL) studies of the set of undoped and doped with Eu3+ ions Bi-containing oxide compounds BiPO4, K3Bi5(PO4)6, K2Bi(PO4)(MoO4) and K5Bi(MoO4)4 as well as calculations of their electronic structures were performed. The intrinsic PL of undoped crystals was found under excitation in VUV and UV diapason of light (100–400 nm). The PL spectra possess several main components lying in the blue-green, green-orange and orange-red light diapasons (from 400 up to 850 nm). When Eu ions are incorporated into the crystals, the intrinsic PL diminishes and inner f–f PL of Eu3+ ions becomes dominant. Comparison of the PL excitation spectra with the data of calculated partial density of electronic states allowed distinguishing the role of excitation transitions in bismuth-oxygen polyhedrons (BiO8 or BiO6), phosphate (PO43–) and molybdate (MoO42–) groups. Observed intrinsic PL mainly originates from the excitation transitions in Bi – oxygen polyhedrons followed by the related backward radiation transitions. Very strong excitation energy transfer from bismuth-oxygen polyhedrons to Eu3+ ions was observed for all investigated Eu-doped compounds.

References: 

1. I.Zatovsky, K.Terebilenko, M.Slobodyanik et al., J. Solid State Chem., 180, 3351 (2007). http://dx.doi.org/10.1016/j.jssc.2007.10.001

2. E.Silva, A.Ayala, I.Guedes et al., Opt. Mater., 29, 224 (2006). http://dx.doi.org/10.1016/j.optmat.2005.09.001

3. W.Di, X.Wang, P.Zhu, B.Chen, J. Solid State Chem., 180, 467 (2007). http://dx.doi.org/10.1016/j.jssc.2006.11.006

4. X.He, M.Guan, N.Lian et al., J. Alloys Compd., 492, 452 (2010). http://dx.doi.org/10.1016/j.jallcom.2009.11.138

5. M.Voda, R.Balda, I.Saez de Ocariz et al., J. Alloys Compd., 275–278, 214 (1998). http://dx.doi.org/10.1016/S0925-8388(98)00306-5

6. H.Canibano, G.Boulon, L.Palatella et al., J. Luminescence, 102–103, 318 (2003). http://dx.doi.org/10.1016/S0022-2313(02)00526-4

7. N.Lakshminarasimhan, U.V.Naradaraju, J. Solid State Chem., 177, 3536 (2004). http://dx.doi.org/10.1016/j.jssc.2004.06.021

8. Y.Wang, Y.Sun, J.Zhang et al., Physica B, 403, 2071 (2008). http://dx.doi.org/10.1016/j.physb.2007.11.015

9. J.Legendziewicz, M.Guzik, J.Cuinska, Opt. Mater., 31, 567 (2009). http://dx.doi.org/10.1016/j.optmat.2007.11.035

10. Zb.Mazurak, G.Blasse, J.Lebertz, J. Solid State Chem., 71, 396 (1987). http://dx.doi.org/10.1016/0022-4596(87)90248-9

11. G.Blasse, J. Solid State Chem., 4, 52 (1972). http://dx.doi.org/10.1016/0022-4596(72)90131-4

12. I.Zatovsky, K.Terebilenko, M.Slobodyanik et al., J. Solid State Chem., 179, 3550 (2006). http://dx.doi.org/10.1016/j.jssc.2006.07.027

13. G.Zimmerer, Radiat. Meas., 42, 859 (2007). http://dx.doi.org/10.1016/j.radmeas.2007.02.050

14. P.Blaha, K.Schwarz, G.Madsen et al., WIEN2k, Wien, Austria (2001).

15. J.P.Perdew, Y.Wang, Phys. Rev. B, 45, 13244 (1992). http://dx.doi.org/10.1103/PhysRevB.45.13244

16. D.Wang, Yu.Wang, Mater. Res. Bull., 42, 2163 (2007). http://dx.doi.org/10.1016/j.materresbull.2007.01.006

17. B.Romero, S.Bruque, M.A.G.Aranda, J.E.Iglesias, Inorg. Chem., 33, 1869 (1994). http://dx.doi.org/10.1021/ic00087a023

18. C.Timmermans, G.Blasse, J. Solid State Chem., 52, 222 (1984). http://dx.doi.org/10.1016/0022-4596(84)90005-7

19. G.Blasse, A.C.van der Steen, Solid State Comm., 31, 993 (1979). http://dx.doi.org/10.1016/0038-1098(79)90016-4

20. D.A.Spassky, A.N.Vasil'ev, I.A.Kamenskikh et al., J. Phys. Condens. Matter., 23, 365501 (2011). http://dx.doi.org/10.1088/0953-8984/23/36/365501

21. S.B Mikhrin, A.N Mishin, A.S Potapov et al., Nucl. Instrum. Meth. Phys. Res. A., 486, 295 (2002). http://dx.doi.org/10.1016/S0168-9002(02)00722-2

22. M.Wiegel, G.Blasse, J. Solid State Chem., 99, 388 (1992). http://dx.doi.org/10.1016/0022-4596(92)90327-R

23. P.Dorenbos, J. Luminescence, 111, 89 (2005). http://dx.doi.org/10.1016/j.jlumin.2004.07.003

24. P.Bautinaud, E.Pinel, M.Dubois et al., J. Luminescence, 111, 69 (2005). http://dx.doi.org/10.1016/j.jlumin.2004.06.006

25. W.F.Zhang, Z.Yin, M.S.Zhang et al., J. Phys.:Condens. Matter., 11, 5655 (1999). http://dx.doi.org/10.1088/0953-8984/11/29/312

26. O.Chukova, Yu.Hizhnyi, S.Nedilko et al., Opt. Mater., 28, 643 (2006). http://dx.doi.org/10.1016/j.optmat.2005.09.009

Current number: