Вы здесь

Funct. Mater. 2013; 20 (1): 37-43.


Indium induced nanostructures on In4Se3(100) surface studied by scanning tunneling microscopy

P.V.Galiy[1], T.M.Nenchuk[1], A.Ciszewski[2],P.Mazur[2], S.Zuber[2], Ya.M.Buzhuk[1]

[1]Electronics Department, I.Franko Lviv National University, 79005 Lviv, Ukraine
[2]Institute of Experimental Physics, University of Wroclaw, 50-204 Wroclaw, Poland


Indium deposition leads to changes in the scanning tunneling microscopy (STM)-revealed (100) surface morphology of In4Se3 layered semiconductor with the formation of nanostructures, which are characterized by different dimensionality dependent on different crystal growth conditions. Preferable formation of nanodots in low and quasi one dimensional (1D) structures for the high bulk-conductivity crystals has been observed. The STM and scanning tunneling spectroscopy data enable us to consider that the dimensionality, shape and direction of the obtained indium deposition structures are induced by indium clusters available on the original, on-the-lattice-scale furrowed, ultra high vacuum (UHV) (100) cleavages of In4Se3 crystal due to the self-intercalation phenomenon.


1. P.Kumar, Nanoscale Res. Lett., 5, 1367 (2010). http://dx.doi.org/10.1007/s11671-010-9696-9

2. N.Wang, Y.Cai, R.Q.Zhang, Mater. Sci. and Engin., R 60, 1 (2008).

3. P.V.Galiy, A.Ciszewski, O.R.Dveriy et al., Functional Materials, 16, 279 (2009).

4. U.Schwarz, H.Hillebrecht, H.J.Deiseroth, R.Walther, Zeitschrift fur Kristallographie, 210, 342 (1995). http://dx.doi.org/10.1524/zkri.1995.210.5.342

5. J.-S.Rhyee, K.H.Lee, S.M.Lee et al., Nature, 459, 965 (2009). http://dx.doi.org/10.1038/nature08088

6. Ya.B.Losovyj, Melanie Klinke, En Cai et al., Appl. Phys. Lett., 92, 122107 (2008). http://dx.doi.org/10.1063/1.2894577

7. O.A.Balitskii, V.P.Savchyn, B.Jaeckel, W.Jaegeremann, Physica E, 22, 921 (2004). http://dx.doi.org/10.1016/j.physe.2003.11.198

8. I.Horcas, R.Fernandez, J.M.Gomez-Rodriguez et al., Rev. Sci. Instrum., 78, 013705 (2007). http://dx.doi.org/10.1063/1.2432410

9. P.V.Galiy, T.M.Nenchuk, O.R.Dveriy et al., Chem. Metals and Alloys, 4, 1 (2011).

10. M.Sznajder, K.Z.Rushchanskii, L.Yu.Kharkhalis, D.M.Bercha, Phys. Stat. Sol. (b), 243, 592 (2006). http://dx.doi.org/10.1002/pssb.200541176

11. R.Adelung, F.Ernst, A.Scott et al., Adv. Matter., 14, 1056 (2002). http://dx.doi.org/10.1002/1521-4095(20020805)14:15<1056::AID-ADMA1056>3.0.CO;2-F

12. P.Schmidt, J.Kroger, B M.Murphy et al., New J. Phys., 10, 013022 (2008). http://dx.doi.org/10.1088/1367-2630/10/1/013022

13. E.Spiecker, A.Schmid, A.Minor et al., Phys. Rev. Lett., 96, 086401 (2006). http://dx.doi.org/10.1103/PhysRevLett.96.086401

14. W.R.McKinnon, R.R.Haering, Physical Mechanisms of Intercalation in Modern Aspects in Electrochemistry, ed. by R.E.White, J.O'M.Bockris, B.E.Conway, Plenum Press, New York (1983).

15. P.V.Galiy, A.V.Musyanovych, Ya.M.Fiyala, Physica E, 35, 88 (2006). http://dx.doi.org/10.1016/j.physe.2006.06.003

16. L.S.Demkiv, T.M.Demkiv, V.P.Savchyn, J.M.Stakhira, J. Phys. Stud., 2, 536 (1998).

17. R.Wiesendanger, Scanning Probe Microscopy and Spectroscopy: Methods and Applications, Cambridge University Press, Cambridge, UK (1994). http://dx.doi.org/10.1017/CBO9780511524356

Current number: