Funct. Mater. 2013; 20 (1): 75-80.

http://dx.doi.org/10.15407/fm20.01.075

Phase transitions in the nanopowders KTa0.5Nb0.5O3 studied by Raman spectroscopy

I.S.Golovina[1], V.P.Bryksa[1], V.V.Strelchuk[1], I.N.Geifman[2]

[1]Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41 Nauki Ave., 03028 Kyiv, Ukraine
[2]Quality Engineering Education, Inc., Buffalo Grove, IL 60089, USA

Abstract: 

Raman spectra of KTa0.5Nb0.5O3 nanopowder solid solution were obtained at the temperatures from –190°C to 600°C and investigated for the first time. The compound was synthesized by a new technology. Temperature dependences of the intensity, width and frequency of the B1(TO2), A1(TO1), B1(TO3), A1(TO3) and B2(TO3) modes are thoroughly analyzed. A significant expanding of the temperature ranges of all phase transitions, correlated with a spread of particle sizes is registered. It was found that an average temperature of each of the phase transitions is shifted in different way, in particular: a low-temperature transition at 30 degrees higher, the middle transition at 10 degrees higher, and the ferroelectric phase transition occurs at 20 degrees lower than the temperature of the corresponding transitions in single-crystal KTa0.5Nb0.5O3.

References: 

1. M.G.Cohen, E.I.Gordon, Appl. Phys. Lett., 5, 181 (1964). http://dx.doi.org/10.1063/1.1754108

2. F.S.Chen, J.E.Geusic, S.K.Kurtz et al., J. Appl. Phys., 37, 388 (1966). http://dx.doi.org/10.1063/1.1707846

3. John A. van Raalte, J. Opt. Soc. Am., 57, 671 (1967). http://dx.doi.org/10.1364/JOSA.57.000671

4. A.Rousseau, M.Guilloux-Viry, E.Dogheche et al., J. Appl. Phys., 102, 093106 (2007). http://dx.doi.org/10.1063/1.2809400

5. X.P.Wang, J.Y.Wang, H.J.Zhang et al., J. Appl. Phys., 103, 033513 (2008). http://dx.doi.org/10.1063/1.2838221

6. A.Bartasyte, J.Kreisel, W.Peng, M.Guilloux-Viry, Appl. Phys. Lett., 96, 262903 (2010). http://dx.doi.org/10.1063/1.3455326

7. H.-M.Christen, E.D.Specht, D.P.Norton et al., Appl. Phys. Lett., 72, 2535 (1998). http://dx.doi.org/10.1063/1.121411

8. E.D.Specht, H.-M.Christen, D.P.Norton, L.A.Boatner, Phys. Rev. Lett., 80, 4317 (1998). http://dx.doi.org/10.1103/PhysRevLett.80.4317

9. H.-M.Christen, K.S.Harshavardhan, M.F.Chisholm et al., J. Electroceram., 4, 279 (2000). http://dx.doi.org/10.1023/A:1009994004989

10. S.Triebwasser, Phys. Rev., 114, 63 (1959). http://dx.doi.org/10.1103/PhysRev.114.63

11. D.A.Tenne, A.Soukiassian, M.H.Zhu et al., Phys. Rev. B, 67, 012302 (2003). http://dx.doi.org/10.1103/PhysRevB.67.012302

12. K.Y.Zheng, N.Wei, F.X.Yang et al., Front. Phys. China, 2, 436 (2007). http://dx.doi.org/10.1007/s11467-007-0052-1

13. Y.M.Hu, H.S.Gu, Z.Hu et al., Cryst. Grow. Design, 8, 832 (2008). http://dx.doi.org/10.1021/cg070230q

14. Yong-Ming Hu, Hao-Shuang Gu, Di Zhou et al., J. Am. Ceram. Soc., 93, 609 (2010). http://dx.doi.org/10.1111/j.1551-2916.2009.03461.x

15. O.O.Andriiko, I.V.Kovalenko, L.V.Chernenko et al., Naukovi Visti NTTU KPI, No.1, 117 (2008).

16. I.S.Golovina, S. P.Kolesnik, I. N.Geifman, A.A.Andriiko, Ferroelectrics, 416, 133 (2011). http://dx.doi.org/10.1080/00150193.2011.577984

17. I.S.Golovina, S.P.Kolesnik, V.Bryksa et al., Physica B: Condens. Matter., 407, 614 (2012). http://dx.doi.org/10.1016/j.physb.2011.11.044

18. G.E.Kugel, H.Mesli, M.D.Fontana, D.Rytz, Phys. Rev. B, 37, 5619 (1988). http://dx.doi.org/10.1103/PhysRevB.37.5619

19. M.E.Lines, A.M.Glass, Principles and Application of Ferroelectrics and Related Materials, Clarendon Press, Oxford (1977).

20. A.Baier-Saip, E.Ramos-Moor, A.L.Cabrera, Solid State Communications, 135, 367 (2005). http://dx.doi.org/10.1016/j.ssc.2005.05.021

Current number: