Funct. Mater. 2013; 20 (1): 103-110.

http://dx.doi.org/10.15407/fm20.01.103

Production of textured ribbons based on Ni–W paramagnetic alloys

V.A.Finkel, V.V.Derevyanko, M.S.Sungurov, T.V.Sukhareva, Yu.N.Shakhov

National Science Center "Kharkiv Institute of Physics and Technology", National Academy of Sciences of Ukraine, 1 Akademicheskaya Str., 61108 Kharkiv, Ukraine

Abstract: 

The objective of the work is searching for ways to produce substrates for second generation HTSC-covered conductors based on high tungsten content Ni–W paramagnetic alloys having a cubic texture of {001}< 100> type. The work is based on the following hypothesis: increasing the stacking fault energy Esf, and, as a consequence, cubic structure formation is possible due to rather strong compressive stress in the ribbon. On the conceptions developed, two new ways for production of a cubic texture in the ribbon were realized: (i) TiN thin layer plasma deposition, and (ii) Ni–W alloy rolling under conditions providing dislocation high density ("extreme rolling"). Optimal schemes for mechanical and thermal treatment of paramagnetic Ni–9.5 at. % W alloy based ribbons were developed including choice of synthesis method, rolling regimes parameters, ribbon thickness, annealing temperature and time, etc.

References: 

1. D.Larbalestier, A.Gurevich, D.M.Feldmann, A.Polyanski, Nature, 41, 368 (2001). http://dx.doi.org/10.1038/35104654

2. G.Celentano, V.Galluzzi, A.Maneiani et al., J. Phys.:Conf. Ser., 43, 158 (2006). http://dx.doi.org/10.1088/1742-6596/43/1/040

3. Ekenmeier, R.Huhne, A.Guth et al., Supercond. Sci. L., 23, 085012 (2010). http://dx.doi.org/10.1088/0953-2048/23/8/085012

4. A.O.Ijodola, J.R.Thomson, A.Goyal et al., Physica C, 403, 163 (2004). http://dx.doi.org/10.1016/j.physc.2003.12.003

5. Y.A.Ganenko, H.Rauh, P.Kruger, Appl. Phys. Lett., 98, 152303 (2011).

6. M.-W.Kim, B.-H.Jun, B.Ki Ji et al., J. Korean Powder Met. Inst., 14, 13 (2007). http://dx.doi.org/10.4150/KPMI.2007.14.1.013

7. P.P.Bhattacharjee, R.K.Ray, A.Upadhyaya, Mater. Sci. Eng. A, 488, 84 (2008). http://dx.doi.org/10.1016/j.msea.2007.10.065

8. M.M.Gao, H.L.Suo, P.K.Gao et al., J. Phys., Conf. Series, 234, 022010 (2010). http://dx.doi.org/10.1088/1742-6596/234/2/022010

9. H.Sakamoto, Y.Nagasu, Y.Ohashi et al., Physica C, 463–465, 600 (2007). http://dx.doi.org/10.1016/j.physc.2007.04.257

10. C.C.Clickner, J.W.Ekin, N.Cheggour et al., Cryogenics, 46, 432 (2006). http://dx.doi.org/10.1016/j.cryogenics.2006.01.014

11. D.M.Feldmann, J.L.Reeves, A.Polyanscii et al., Appl. Phys. Lett., 77, 18, 2906 (2000).

12. J.Eickemeyer, R.Huhne, A.Guth et al., Supercond. Sci. & Technol., 23, 075005 (2010). http://dx.doi.org/10.1088/0953-2048/23/8/085012

13. Y.Zhao, H.-L.Suo, D.He et al., Supercond. Sci. &Technol., 21, 085012 (2008). http://dx.doi.org/10.1088/0953-2048/21/8/085012

14. C.Cantoni, A.Goyal. X.Li et al., IEEE Trans. Appl. Supercond., 15, 2981 (2005). http://dx.doi.org/10.1109/TASC.2005.848691

15. J.Xiong, V.Matias, H.Wang et al., J. Appl. Phys., 108, 083903 (2010). http://dx.doi.org/10.1063/1.3499270

16. F.A.Mohamed, T.G.Langdonm, Met. Trans., 5A, 927 (1978).

17. I.Axenov, V.G.Padalka, A.N.Belokhvostikov et al., Plasma Phys. and Control. Fusion, 28, 761 (1986). http://dx.doi.org/10.1088/0741-3335/28/5/002

18. I.I.Axenov, A.A.Andreev, A.A.Romanov et al., Ukr. Phys. J., 24, 515 (1979).

19. I.I.Axenov, V.M.Khoroshikh, IEEE Trans. Plasma Sci., 27, 1026 (1999). http://dx.doi.org/10.1109/27.782275

20. V.A.Finkel, A.M.Bovda, V.V.Derevyanko et al., Functional Materials, 19, 109 (2012).

Current number: