Funct. Mater. 2013; 20 (1): 127-132.
Luminescent temperature sensor based on [Ru(bpy)3]2+ incorporated into chitosan
[1]Institute of Chemistry, Environmental Protection and Biotechnology, Jan Dlugosz University, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
[2]Institute of Physics, Jan Dlugosz University, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
A novel luminescent temperature sensor using ruthenium(II)-tris(2,2´-bipyridil) ([Ru(bpy)3]2+) incorporated into chitosan polymer matrix was developed. The sensor exhibits completely reversible and stable luminescent response (λ exc = 455 nm, λ em = 605 nm), strong temperature sensitivity (–2.0 %/°C), significant luminescence intensity decrease (~10×) in the range of 25–75°C, and stable construction. Ruthenium(II) complex oxygen sensitivity was avoided by use of matrix (chitosan) with low oxygen permeability coefficient. In the absence of oxygen the sensor shows a little higher accuracy and stability of luminescence response than under oxygen conditions. Moreover, this sensor, due to biocompatibility of the used ingredients and the emission in the red VIS-region, which is transparent for tissues, is promising for use in biological applications.
1. O.S.Wolfbeis, Adv. Mater., 20, 3759 (2008). http://dx.doi.org/10.1002/adma.200702276
2. N.B.Borchert, G.V.Ponomarev, J.P.Kerry, D.B.Papkovsky, Anal. Chem., 83, 18 (2011). http://dx.doi.org/10.1021/ac1025754
3. M.I.J.Stich, S.Nagl, O.S.Wolfbeis et al., Adv. Funct. Mater., 18, 1399 (2008). http://dx.doi.org/10.1002/adfm.200701199
4. M.Tsvirko, B.Kalota, Wiad. Chem., 65, 1069 (2011) [in Polish].
5. E.Mandowska, A.Mandowski, S.Tkaczyk et al., Elektronika, 11, 90 (2011) [in Polish].
6. M.Kozak, Master's Thesis, Jan Dlugosz University, Czestochowa (2012) [in Polish].
7. S.M.Borisov, T.Mayr, A.A.Karasyov et al., in: Springer Series of Fluorescence, Springer-Verlag, Berlin, Heidelberg (2008), v.4, p.431.
8. G.Liebsch, I.Klimant, O.S.Wolfbeis, Adv. Mater., 11, 1296 (1999). http://dx.doi.org/10.1002/(SICI)1521-4095(199910)11:15<1296::AID-ADMA1296>3.0.CO;2-B
9. Z.Wang, A.McWilliams, C.Evans et al., Adv. Funct. Mater., 12, 415 (2002). http://dx.doi.org/10.1002/1616-3028(20020618)12:6/7<415::AID-ADFM415>3.0.CO;2-Y
10. T.Liu, B.T.Campbell, S.P.Burns et al., Appl. Mech. Rev., 50, 227 (1997). http://dx.doi.org/10.1115/1.3101703
11. R.Erasquin, C.Cunningham, J.P.Sullivan et al., AIAA Paper, 98-0588 (1998).
12. W.J.Dressick, J.Cline III, J.N.Demas, B.A.DeGraff, J. Am. Chem. Soc., 108, 7567 (1986). http://dx.doi.org/10.1021/ja00284a021
13. Y.Amao, Mikrochim. Acta, 143, 1 (2003). http://dx.doi.org/10.1007/s00604-003-0037-x
14. C.Baleizao, S.Nagl, M.Schaferling et al., Anal. Chem., 80, 6449 (2008). http://dx.doi.org/10.1021/ac801034p
15. G.A.F.Roberts, Chitin Chemistry, Macmillan Press, London (1992).
16. M.Rinaudo, G.Pavlov, J.Desbrieres, Polymer, 40, 7029 (1999). http://dx.doi.org/10.1016/S0032-3861(99)00056-7
17. P.Sorlier, A.Denuziere, C.Viton, A.Domard, Biomacromol., 2, 765 (2001). http://dx.doi.org/10.1021/bm015531+
18. M.Mucha, Chitozan Wszechstronny Polimer ze Zrodel Odnawialnych, Wydanictwo Naukowo-Techniczne, Warszawa (2010) [in Polish].
19. J.Tkac, J.W.Whittaker, T.Ruzgas, Biosens. Bioelectron., 22, 1820 (2007). http://dx.doi.org/10.1016/j.bios.2006.08.014
20. S.El Ichi, F.Limam, M.N.Marzouki, Mater. Sci. Eng. C, 29, 1662 (2009). http://dx.doi.org/10.1016/j.msec.2009.01.003
21. R.Pauliukaite, M.E.Ghica, O.Fatibello-Filho, C.M.A.Brett, Anal. Chem., 81, 5364 (2009). http://dx.doi.org/10.1021/ac900464z
22. C.Z.Zhao, N.Egashira, Y.Kurauchi, K.Ohga, Anal. Sci., 14, 439 (1998). http://dx.doi.org/10.2116/analsci.14.439
23. R.A.Muzzarelli, A.Isolati, A.Ferrero, Ion Exchange Membr., 1, 193 (1974).
24. A.Ito, M.Sato, T.Anma, Angew. Makromol. Chem., 248, 85 (1997). http://dx.doi.org/10.1002/apmc.1997.052480105
25. J.Hosokawa, M.Nishiyama, K.Yoshihora, T.Kuba, Ind. Eng. Chem. Res., 29, 800 (1990). http://dx.doi.org/10.1021/ie00101a015
26. K.Suzuki, A.Kobayashi, S.Kaneko et al., Phys. Chem. Chem. Phys., 11, 9850 (2009). http://dx.doi.org/10.1039/b912178a
27. A.Harriman, J. Chem. Soc. Chem. Commun., 21, 777 (1977). http://dx.doi.org/10.1039/C39770000777
28. K.Nakamaru, Bull. Chem. Soc. Jpn., 55, 1639 (1982). http://dx.doi.org/10.1246/bcsj.55.1639
29. K.J.Morris, M.S.Roach, W.Xu et al., Anal. Chem., 79, 9310 (2007). http://dx.doi.org/10.1021/ac0712796
30. R.S.Lumpkin, E.M.Kober, L.A.Worl et al., J. Phys. Chem., 94, 239 (1990). http://dx.doi.org/10.1021/j100364a039
31. J.M.Lang, Z.A.Dreger, H.G.Drickamer, J. Phys. Chem., 97, 2289 (1993). http://dx.doi.org/10.1021/j100112a034
32 H.Ishida, S.Tobita, Y.Hasegawa et al., Coord. Chem. Rev., 254, 2449 (2010). http://dx.doi.org/10.1016/j.ccr.2010.04.006
33. H.Peng, M.I.J.Stich, J.Yu et al., Adv. Mater., 22, 716 (2010). http://dx.doi.org/10.1002/adma.200901614
34. B.Zelelow, G.E.Khalil, G.Phelan et al., Sens. Actuat. B, 96, 304 (2003). http://dx.doi.org/10.1016/S0925-4005(03)00547-1
35. H.Lam, G.Rao, J.Loureiro, L.Tolosa, Talanta, 84, 65 (2011). http://dx.doi.org/10.1016/j.talanta.2010.12.016
36. K.Takato, N.Gokan, M.Kaneko, Photochem. Photobiol. A, 169, 109 (2005). http://dx.doi.org/10.1016/j.jphotochem.2004.05.035