Funct. Mater. 2013; 20 (2): 163-171.

http://dx.doi.org/10.15407/fm20.02.163

Bio-SiC ceramics coated with hydroxyapatite using gas-detonation deposition: An alternative to titanium-based medical implants

M.I.Klyui[1], V.P.Temchenko[1], O.P.Gryshkov[1], V.A.Dubok[2], V.P.Kladko[1], A.V.Kuchuk[1], V.M.Dzhagan[1], V.O.Yukhymchuk[1], V.S.Kiselov[1]

[1]V.Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41 Nauky Ave., 03028 Kyiv, Ukraine
[2]I.Frantsevich Institute for Problems of Material Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivskogo Str., 03680 Kyiv, Ukraine

Abstract: 

Silicon-carbide (SiC) ceramics synthesized using forced infiltration and coated with bioactive hydroxyapatite (HA), represents a great potential for replacement of traditional titanium medical implants. In this paper the surface morphology, structural properties and phase content of HA coatings deposited onto nano-porous bio-SiC ceramics with pore orientation being parallel or perpendicular to the plain of subsequently deposited HA film have been studied. The HA coatings produced at 5 s of deposition contained cracks, while the uniform hydroxyapatite coating has been produced at 10 s of deposition. X-ray diffraction analysis revealed that the HA coatings preserve crystal structure of the initial hydroxyapatite powder during deposition. From the intensity ratio of Raman scattering peaks, corresponding to crystalline (967 cm–1) and amorphous (951 cm–1) HA, the least and most crystalline structures were found. The structural perfection of the HA coating was higher for SiC substrates with parallel pore orientation (with respect to the plane of HA growth), indicating that structural properties of SiC ceramics affect the morphological and structural perfection of deposited HA coating.

References: 

1. Y.W.Gu, K.A.Khor, P.Cheang, Biomaterials, 24, 1603 (2003). http://dx.doi.org/10.1016/S0142-9612(02)00573-2

2. K.A.Khor, H.Li, P.Cheang, Biomaterials, 25, 1117 (2004).

3. J.M.Fernandez-Pradas, M.V.Garcia-Cuenca, L.Cleries et al., Appl. Surf. Sci., 195, 31 (2002). http://dx.doi.org/10.1016/S0169-4332(02)00002-8

4. K.A.Gross, C.C.Berndt, H.Herman, J. Biomed. Mater. Res., 39, 407(1998). http://dx.doi.org/10.1002/(SICI)1097-4636(19980305)39:3<407::AID-JBM9>3.0.CO;2-N

5. H.Li, K.A.Khor, P.Cheang, Mater. Sci. Eng. A, 293, 71 (2000). http://dx.doi.org/10.1016/S0921-5093(00)01245-4

6. C.G.Leeuwenburgha, J.G.C.Wolke, M.C.Siebers et al., Biomaterials, 27, 3368 (2006). http://dx.doi.org/10.1016/j.biomaterials.2006.01.052

7. N.I.Klyui, V.P.Temchenko, A.P.Gryshkov et al., in: Proc. 8th Int. Conf. on Nanoscience and Nanotechnologies - NN11, Thessaliniki, Greece (2011).

8. Q.Zhou, S.Dong, Y.Ding et al., Ceram. Int., 35, 2161 (2009). http://dx.doi.org/10.1016/j.ceramint.2008.11.023

9. J.C.Margiotta, D.Zhang, D.C.Nagle, Int. J. Refract. Met. Hard Mater., 28, 191 (2010). http://dx.doi.org/10.1016/j.ijrmhm.2009.09.002

10. A.Centeno, V.G.Rocha, A.Borrell et al., Ceram. Int., 38, 2171 (2012). http://dx.doi.org/10.1016/j.ceramint.2011.10.060

11. V.O.Yukhymchuk, V.S.Kiselov, A.E.Belyaev et al., Phys. Stat. Solidi A, 208, 808 (2011). http://dx.doi.org/10.1002/pssa.201026618

12. V.S.Kiselov, P.M.Lytvyn, V.O.Yukhymchuk et al., J. Appl. Phys., 107, 093510 (2010). http://dx.doi.org/10.1063/1.3407565

13. V.M.Dzhagan, M.Ya.Valakh, A.A.Konchits et al., Function Materials, 16, 306 (2009)

14. Germany Patent 3,447,877 (1986).

15. Germany Patent 3,441,079 (1986).

16. Germany Patent 3,440,870 (1986).

17. N.I.Klyui, V.P.Temchenko, A.P.Gryshkov et al., Function Materials, 18, 1 (2011).

18. U.Posset, E.Loeckling, R.Thull et al., J. Biomed. Mater. Res., 40, 640 (1998). http://dx.doi.org/10.1002/(SICI)1097-4636(19980615)40:4<640::AID-JBM16>3.0.CO;2-J

19. H.Yu, H.Zhang, X.Wang et al., J. Phys. Chem. Sol., 68, 1863 (2007). http://dx.doi.org/10.1016/j.jpcs.2007.05.020

20. R.Ternane, M.Th.Cohen-Abad, G.Boulon et al., Sol. St. Ionics, 160, 183 (2003). http://dx.doi.org/10.1016/S0167-2738(03)00161-9

21. H.Li, B.S.Ng, K.A.Khor et al., Acta Materialia, 52, 445 (2004). http://dx.doi.org/10.1016/j.actamat.2003.09.046

22. J.M.Fernandez-Pradas, L.Clerie, G.Sardin et al., Biomaterials, 23, 1989 (2002). http://dx.doi.org/10.1016/S0142-9612(01)00327-1

23. H.-L.Kim, Y.-S.Kim, D.-J.Kim et al., J. Korean Phys. Soc., 49, 2019 (2006).

24. J.M.Fernandez-Pradas, L.Clerie, G.Sardin et al., Biomaterials, 23, 1989 (2002). http://dx.doi.org/10.1016/S0142-9612(01)00327-1

Current number: