Funct. Mater. 2013; 20 (2): 186-191.

http://dx.doi.org/10.15407/fm20.02.186

Thin films of Cu2ZnSnS4 for solar cells: optical and structural properties

I.S.Babichuk[1], V.O.Yukhymchuk[1], V.M.Dzhagan[1], M.Ya.Valakh[1], M.Leon[2], I.B.Yanchuk[1], E.G.Gule[1], O.M.Greshchuk[1]

[1]V.Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45 Prospect Nauky, 03028 Kyiv, Ukraine
[2]Facultad de Ciencias, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain

Abstract: 

The structure of Cu2ZnSnS4 films was investigated by Raman spectroscopy, scanning electron microscopy, energy dispersive X-ray spectrometry, optical reflectance and photoluminescence. The films were formed by thermal annealing layers of copper, zinc and tin sulfides on glass substrates at different substrate temperature and ambient atmosphere. It was revealed that the films have the dominant structure of kesterite with possible inclusions of stannite Cu2ZnSnS4 structure. Under certain growth conditions, however, segregation of Cu2–xS occurs, as proved by registering the characteristic peak in Raman spectra. No traces of secondary phases of zinc or tin sulphides are found.

References: 

1. T.Unold, H.W.Schok, Annu. Rev. Mater. Res., 41, 297 (2011). http://dx.doi.org/10.1146/annurev-matsci-062910-100437

2. I.Repins, M.A.Contreras, B.Egaas et al., Prog. Photovolt. Res. Appl., 16, 235 (2008). http://dx.doi.org/10.1002/pip.822

3. S.Siebentritt, S.Schorr, Prog. Photovolt. Res. Appl., 20, 512 (2012). http://dx.doi.org/10.1002/pip.2156

4. D.Aaron, R.Barkhouse, O.Gunawan et al., Prog. Photovolt. Res. Appl., 99, 262105 (2011).

5. H.Matsushita, T.Maeda, A.Katsui, T.Takizawa, J. Cryst. Growth, 208, 416 (2000). http://dx.doi.org/10.1016/S0022-0248(99)00468-6

6. O.V.Parasyuk, L.D.Gulay, Ya.E.Romanyuk, L.V.Piskach, J. Alloys Comp., 329, 202 (2001). http://dx.doi.org/10.1016/S0925-8388(01)01606-1

7. Ya.E.Romanyuk, O.V.Parasyuk, J. Alloys. Comp., 348, 195 (2003). http://dx.doi.org/10.1016/S0925-8388(02)00852-6

8. S.Schorr, H.-J.Hoebler, M.Tovar, Eur. J. Mineral., 19, 65 (2007). http://dx.doi.org/10.1127/0935-1221/2007/0019-0065

9. S.Schorr, Solar Energy Mater and Solar Cells, 95, 1482 (2011). http://dx.doi.org/10.1016/j.solmat.2011.01.002

10. X.Fontane, L.Calvo-Barrio, V.Izquierdo-Roca et al., Appl. Phys. Lett., 98, 181905 (2011). http://dx.doi.org/10.1063/1.3587614

11. S.A.Kissin, Can. Mineral., 27, 689 (1989).

12. S.R.Hall, J.T.Szymanski, J.M.Stewart, Can. Mineral., 16, 131 (1978).

13. S.Chen et al., Phys. Rev., B 79, 165211 (2009). http://dx.doi.org/10.1103/PhysRevB.79.165211

14. J. Alvarez-Garcia, V. Izquierdo-Roca, A. Perez-Rodriguez, Raman Spectroscopy on thin films for solar cells, in Advanced Characterization Techniques for Thin Film Solar Cells. Ed. U. Rau, D. Abou-Ras, T. Kirchatz, Wiley - VCH Verlag, 365 (2011)

15. M.Himmrich, H.Haeuseler, Spectrochim. Acta, 47A, 933 (1991). http://dx.doi.org/10.1016/0584-8539(91)80283-O

16. T.Gurel, C.Sevik, T.Cgin, Phys. Rev., B 84, 205201 (2011). http://dx.doi.org/10.1103/PhysRevB.84.205201

17. P.A.Fernandes, P.M.P.Salome, A.F.daCunha, Thin Solid Films, 517, 2519 (2009). http://dx.doi.org/10.1016/j.tsf.2008.11.031

18. K.Muska, M.Kauk, M.Altosaar et al., Energy Procedia, 10, 203 (2011). http://dx.doi.org/10.1016/j.egypro.2011.10.178

19. K.Woo, Y.Kim, J.Moon, Energy Environ. Sci., 5, 5340 (2012). http://dx.doi.org/10.1039/C1EE02314D

20. M.Altosaar, J.Raudoja, K.Timmo et al., Phys. Stat. Sol., 205, 167 (2008). http://dx.doi.org/10.1002/pssa.200776839

21. H.Yoo, J.K.Kim, Thin Solid Films, 518, 6567 (2010). http://dx.doi.org/10.1016/j.tsf.2010.03.058

22. X.Fontane, V.Izquierdo-Rosa, E.Saucedo et al., J. Alloys and Comp., 539, 190 (2012). http://dx.doi.org/10.1016/j.jallcom.2012.06.042

23. R.B.V.Chalapathy, G.S.Jung, B.T.Ahn, Solar Energy Mater. and Solar Cells, 95, 3216 (2011). http://dx.doi.org/10.1016/j.solmat.2011.07.017

24. J.P.Leitao, N.M.Santos, P.A.Fernandes et al., Phys. Rev., B 84, 024120 (2011). http://dx.doi.org/10.1103/PhysRevB.84.024120

25. M.Grossberg, J.Krustok, J.Raudoja, T.Raadik, Appl. Phys. Lett., 101, 102102 (2012). http://dx.doi.org/10.1063/1.4750249

Current number: