Funct. Mater. 2013; 20 (4): 417-423.

http://dx.doi.org/10.15407/fm20.04.417

Nanoparticulate media for environmental applications

Z.Jia[1], M.Bouslama[1], M.Ben Amar[1], M.Amamra[1], M.Kayser[1], M.Traore[1], S.Tieng[1], K.Chhor[1], A.Chianese[2], V.Nadtochenko[3], A.Kanaev[1]

[1]Laboratoire des Sciences des Procedes et des Materiaux, CNRS, Universite Paris 13, Sorbonne Paris Cite, France
[2]Department of Ingegneria Chimica Materiali Ambiente, Sapienza University of Rome, 18 via Eudossiana, 00184 Rome, Italy
[3]Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina str., 119991 Moscow, Russia

Abstract: 

The fabrication of non-agglomerated nanoparticulate solids with an open structure is a challenging task in the field of nanotechnology and nanomaterials. Such solids would permit conserving specific size-selected physical and chemical properties and highest specific area of the active phase, by avoiding severe health problems related to undesirably nanoparticles inhalation. We report on a successful preparation of Fe–TiO2 and Ag,Au–TiO2 coatings and TiO2–AlO3 ultra-porous monoliths with highly reproducible nanoscale morphology for applications in environmental catalysis.

References: 

1.A.Fujishima, K.Hashimoto, T.Watanabe, TiO2 Photocatalysis: Fundamentals and Applications, BKC, Tokyo (1999).

2.J.-M.Herrmann, Catalysis Today, 53, 115 (1999). http://dx.doi.org/10.1016/S0920-5861(99)00107-8

3.K.Hashimoto, H.Irie, A.Fujishima, Jpn.J.Appl.Phys., 44, 8269 (2005). http://dx.doi.org/10.1143/JJAP.44.8269

4.A.Piscopo, D.Robert, J.V.Weber, J.Photochem.Photobiol.A, 139, 253 (2001). http://dx.doi.org/10.1016/S1010-6030(01)00381-1

5.D.C.Hurum, A.G.Agrios, K.A.Gray et al., J.Phys.Chem.B, 107, 4545 (2003). http://dx.doi.org/10.1021/jp0273934

6.J.T.Carneiro, T.J.Savenije, J.A.Moulijn, G.Mul, J.Phys.Chem.C, 115, 2211 (2011). http://dx.doi.org/10.1021/jp110190a

7.J.Marugan, D.Hufschmidt, G.Sagawe et al., Water.Res., 40, 833 (2006). http://dx.doi.org/10.1016/j.watres.2005.12.019

8.Z.Zhang, C-C.Wang, R.Zakaria, J.Y.Ying, J.Phys.Chem.B, 102, 10871 (1998). http://dx.doi.org/10.1021/jp982948+

9.G.Liu, C.Sun, H.G.Yang et al., Chem.Commun., 46, 755 (2010). http://dx.doi.org/10.1039/B919895D

10.H.Tada, K.Teranishi, Y.Inubushi, S.Ito, Langmuir, 16, 3304 (2000). http://dx.doi.org/10.1021/la991315z

11.S.A.Maier, Plasmonics: Fundamentals and Applications, Springer, NY (2007).

12.K.Awazu, M.Fujimaki, C.Rockstuhl et al., J.Am.Chem.Soc., 130, 1676 (2008). http://dx.doi.org/10.1021/ja076503n

13.S.Linic, P.Christopher, D.B.Ingram, Nature Mater., 10, 911 (2011). http://dx.doi.org/10.1038/nmat3151

14.S.Tieng, R.Azouani, K.Chhor, A.Kanaev, J.Phys.Chem.C, 115, 5244 (2011). http://dx.doi.org/10.1021/jp111155v

15.S.Tieng, K.Chhor, A.Kanaev, J.Appl.Catal.A, 399, 191 (2011). http://dx.doi.org/10.1016/j.apcata.2011.03.056

16.P.Pucher, M.Benmami, R.Azoauni et al., J. Appl.Catal.A, 332, 297 (2007). http://dx.doi.org/10.1016/j.apcata.2007.08.031

17.M.Bouslama, M.C.Amamra, S.Tieng et al., J.Appl.Catal.A, 402, 156 (2011). http://dx.doi.org/10.1016/j.apcata.2011.05.042

18.M.Bouslama, M.C.Amamra, Z.Jia et al., ASC Catalysis, 2, 1884 (2012). http://dx.doi.org/10.1021/cs300033y

19.Z.Jia, M.Ben Amar, A.Astafiev et al., J.Phys.Chem.C, 116, 17239 (2012). http://dx.doi.org/10.1021/jp303356y

20.Z.Jia, A.Vega-Gonzalez, M.Ben Amar et al., Catalysis Today, 208, 82 (2013). http://dx.doi.org/10.1016/j.cattod.2012.10.028

21.R.Azouani, A.Soloviev, M.Benmami et al., J.Phys.Chem.C, 111, 16243 (2007). http://dx.doi.org/10.1021/jp073949h

22.R.Azouani, A.Michau, K.Hassouni et al., Chem.Eng.Res.Design, 88, 1123 (2010). http://dx.doi.org/10.1016/j.cherd.2009.10.001

23.B.de Caprariis, M.Di Rita, M.Stoller et al., Chem.Eng.Sci., 76, 73 (2012). http://dx.doi.org/10.1016/j.ces.2012.03.043

24.M.Benmami, K.Chhor, A.Kanaev, Chem.Eng.Trans., 6, 55 (2005).

25.O.Khatim, M.Amamra, K.Chhor et al., Chem.Phys.Lett., 558, 53 (2013). http://dx.doi.org/10.1016/j.cplett.2012.12.019

26.R.I.Bickley, T.Gonzalez-Carreno, J.S.Lees et al., J.Sol.State.Chem., 92, 178 (1991). http://dx.doi.org/10.1016/0022-4596(91)90255-G

27.B.Ohtani, O.O.Prieto-Mahaney, D.Li, R.Abe, J.Photochem.Photobiol.A, 216, 179 (2010). http://dx.doi.org/10.1016/j.jphotochem.2010.07.024

28.B.Ohtani, Y.Ogawa, S.I.Nishimoto, J.Phys.Chem.B, 101, 3746 (1997). http://dx.doi.org/10.1021/jp962702+

29.I.Tanabe, K.Matsubara, N.Sakai, T.Tatsuma, J.Phys.Chem.C, 115, 1695 (2011). http://dx.doi.org/10.1021/jp109715y

30.Yu.V.Barbashov, A.D.Zalesskii, A.V.Aibushev et al., Nanotech.Russia, 6, 668 (2011). http://dx.doi.org/10.1134/S199507801105003X

31.Z.Jia, A.Vega-Gonzalez, M.Ben Amar, K.Hassouni, A.Kanaev, X.Duten, to be published.

Current number: