Funct. Mater. 2013; 20 (4): 457-461.

http://dx.doi.org/10.15407/fm20.04.457

Effect of praseodymium doping on electroresistivity along c-axis in Y1–xPrxBa2Cu3O7–δ single crystals

R.V.Vovk[2], N.R.Vovk[2], A.V.Samoilov[2]

[1]V.Karazin Kharkiv National University, 4 Svoboda Sq., 61022 Kharkiv, Ukraine
[2]Ukrainian State Academy of Railway Transport, 7 Feyerbaha Sq., 61050 Kharkiv, Ukraine

Abstract: 

In the present study influence of praseodymium doping on  conductivity across  (transverse)  the basal plane of high-temperature superconducting Y1–xPrxBa2Cu3O7–δ single crystals is investigated. It is determined that increase of praseodymium doping leads to increased localization effects and implementation of the metal – insulator transition   Y1–xPrxBa2Cu3O7–δ, which always precedes the superconducting transition. The praseodymium concentration increase also leads to significant displacement of the point of the metal – insulator transition to the low temperature region.

References: 

1.A.A.Abrikosov, Usp.Fiz.Nauk, 168, 683 (1998). http://dx.doi.org/10.3367/UFNr.0168.199806i.0683

2.R.V.Vovk, Z.F.Nazyrov, I.L.Goulatis, A.Chroneos, Mod.Phys.Lett.B, 26, 1250163 (2012). http://dx.doi.org/10.1142/S0217984912501631

3.D.M.Ginzberg (ed.), Physical Properties of High Temperature Superconductors I, World Scientific, Singapore (1989).

4.B.P.Stojkovic, D.Pines, Phys.Rev.B, 55, 8567 (1997).

5.R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., J.Mater.Sci.:Mater.Electron., 20, 858 (2009). http://dx.doi.org/10.1007/s10854-008-9806-y

6.M.A.Obolenskii, R.V.Vovk, A.V.Bondarenko, N.N.Chebotaev, Low Temp. Phys., 32, 571 (2006). http://dx.doi.org/10.1063/1.2215373

7.A.V.Bondarenko, V.A.Shklovskij, M.A.Obolenskii et al., Phys. Rev. B, 58, 2445 (1998). http://dx.doi.org/10.1103/PhysRevB.58.2445

8.R.V.Vovk, N.R.Vovk, O.V.Shekhovtsov et al., Supercond.Sci.Technol., 26, 085017 (2013). http://dx.doi.org/10.1088/0953-2048/26/8/085017

9.R.V.Vovk, Z.F.Nazyrov, M.A.Obolenskii et al., Philos.Mag., 91, 2291 (2011). http://dx.doi.org/10.1080/14786435.2011.552893

10.A.Kebede et al., Phys.Rev.B, 40, 4453 (1991). http://dx.doi.org/10.1103/PhysRevB.40.4453

11.H.B.Radousky, J.Mater.Res., 7, 1917 (1992). http://dx.doi.org/10.1557/JMR.1992.1917

12.R.V.Vovk, M.A.Obolenskiy, A.A.Zavgorodniy et al., Physica B, 404, 3516 (2009). http://dx.doi.org/10.1016/j.physb.2009.05.047

13.R.V.Vovk, Z.F.Nazyrov, I.L.Goulatis et al., Modern Phys. Lett. B, 27, 1350029 (2013). http://dx.doi.org/10.1142/S0217984913500292

14.R.V.Vovk, M.A.Obolenskii, Z.F.Nazyrov et al., J. Mater. Sci.:Mater. Electron., 23, 1255 (2012). http://dx.doi.org/10.1007/s10854-011-0582-8

15.N.F.Mott, Metal-insulator Transition, Word Scientific, London (1974).

16.R.V.Vovk, A.A.Zavgorodniy, M.A.Obolenskii et al., J. Mater. Sci.:Mater. Electron., 22, 20 (2011). http://dx.doi.org/10.1007/s10854-010-0076-0

17.A.Chroneos, I.L.Goulatis, R.V.Vovk, Acta Chimica Slovenica, 54, 179 (2007).

18.F.A.Boyko, G.V.Bukin, V.A.Voloshin, A.A.Gusev, Low Temp.Phys., 28, 95 (2002). http://dx.doi.org/10.1063/1.1461920

19.R.V.Vovk, Z.F.Nazyrov, L.I.Goulatis, A.Chroneos, Journal of Low Temperature Physics, 170 216 (2013). http://dx.doi.org/10.1007/s10909-012-0755-8

20.R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., Modern Phys. Lett. B, 25, 2131 (2011). http://dx.doi.org/10.1142/S0217984911027327

21.V.M.Apalkov, M.E.Portnoi, Phys.Rev.B, 66, 121303 (2002). http://dx.doi.org/10.1103/PhysRevB.66.121303

22.R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, Phys.Rev.B, 69, 144524 (2004). http://dx.doi.org/10.1103/PhysRevB.69.144524

23.P.G.Curran, V.V.Khotkevych, S.J.Bending et al., Phys.Rev.B, 84, 104507 (2011). http://dx.doi.org/10.1103/PhysRevB.84.104507

24.A.V.Bondarenko, A.A.Prodan, M.A.Obolenskii et al., Low Temp. Phys., 27, 339 (2001). http://dx.doi.org/10.1063/1.1374717

25.R.V.Vovk, A.A.Zavgorodniy, M.A.Obolenskii et al., Modern Phys. Lett. B, 24, 2295 (2010). http://dx.doi.org/10.1142/S0217984910024675

Current number: