Funct. Mater. 2014; 21 (1): 86-91.

http://dx.doi.org/10.15407/fm21.01.086

The heat transfer model for VGF technique with skull layer for halide crystal growth

V.I.Taranyuk[1], A.V.Gektin[1], A.V.Kolesnikov[1], V.V.Kalaev[2]

[1] Institute for Scintillation Materials, STC "Institute for Single Crystals"National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine
[2] Sof-Impact Ltd., 29 Engels Ave., P.O. Box 83, 194156 St. Peterburg, Russia

Abstract: 

The work is devoted to the investigation of the key parameters for reproducible skull technique of NaI based crystals. Combination of math simulation (CGSim software) with experimental measurements of the temperature distribution during the raw material heating, melting stage and later crystallization gave not only approval of the methodology but allowed to grow scintillation crystal with the same performance as typical for single crystals. The obtained results are applicable for the skull layer thickness minimization, melting and crystallization stages verification and estimation of the gradient for proper convection and crystal homogenization. As result the medium size (250× 180× 45 mm3) NaI crystals were obtained.

References: 

1. V.Taranyuk, A.Gektin, I.Kisil et al., J. Cryst. Growth, 318, 820 (2010). http://dx.doi.org/10.1016/j.jcrysgro.2010.11.089

2. V.Taranyuk, A.Gektin, N.Shiran et al., J. Cryst. Growth, 380, 205 (2013). http://dx.doi.org/10.1016/j.jcrysgro.2013.06.025

3. I.I.Kisil, V.I.Taranyuk, S.V.Yaroslavkin, Functional Materials, 15, 600 (2008).

4. V.V.Shlyakhturov, A.V.Gektin, A.Yu.Boyarintsev et al., Functional Materials, 4, 20 (2013).

5. Kyoshiro Imagawa, Horiba Technical Reports, Readout, v.9, 98.

6. A.Gektin, B.Zaslavsky, Crystal Growth Technology, John Wiley & Sons, Ltd, Chichester (2003).

7. http://www.str-soft.com/products/CGSim/

8. V.V.Kalaev, A.I.Zhmakin, E.M.Smirnov, J. Turbulence, 3, 1 (2002). http://dx.doi.org/10.1088/1468-5248/3/1/001

9. V.V.Vasilyev, V.I.Goriletsky, O.Ts.Sidletskiy et al., Opt. Mater., 30, 109 (2007). http://dx.doi.org/10.1016/j.optmat.2006.11.007

10. S.E.Demina, E.N.Bystrova, M.A.Lukanina et al., Opt. Mater., 30, 62 (2007). http://dx.doi.org/10.1016/j.optmat.2006.11.012

11. V.Taranyuk, A.Gektin, I.Kisil et al., J. Cryst. Growth, 360, 95 (2012). http://dx.doi.org/10.1016/j.jcrysgro.2011.11.073

12. V.D.Golyshev, M.A.Gonik, High Temp.-High Pres., 2, 677 (1992).

13. G.J.Janz, F.W.Dampier, G.R.Lakshminarayanan et al., NSRDS-NBS 15, US Government Printing Office, Washington (1968).

14. V.D.Golishev, in: Book of Abstr. of 6-th Intern. Conf., Obninsk: GNC RF-FI (2005), v.4, p.783.

15. G.J.Janz NSRDS-NBS 28, US Government Printing Office, Washington (1969).

16. http://www.hilger-crystals.co.uk/properties.asp?material=13

17. L.V.Gurvich, I.V.Veic, V.A.Medvedev et al., in: Thermodynamic Properties Individual Substance, Nauka, Moscow (1981) [in Russian].

18. M.Globus, B.Grinyov, Jong Kyung Kim, in: Inorganic Scintillators for Modern and Traditional Applications, Kharkiv (2005).

19. E.M.Dianov, A.I.Mitichkin, A.N.Panova et al., Quant. Electron., 1345 (1980).

Current number: