Funct. Mater. 2014; 21 (1): 31-35.

http://dx.doi.org/10.15407/fm21.01.031

Investigation of the defect complexes in highly Mg-doped LiNbO3 crystals by 93Nb NMR method

A.V.Yatsenko, S.V.Yevdokimov, D.Yu.Sugak[1] I.M.Solskii[2]

Taurida National V.Vernadskii University, 4 Vernadskii Ave., 95007 Simferopol, Ukraine
[1] Lviv Polytechnic National University, 12 Bandera Str., 79000 Lviv, Ukraine
[2] Scientific Research Company "Carat", 202 Stryjska Str., 79031 Lviv, Ukraine

Abstract: 

Angular dependence of the line width of the <93Nb NMR spectrum central transition for LiNbO3 crystal with congruent composition and for the samples with high Mg concentration was experimentally investigated. Having the experimental results compared with the results obtained by computer simulation, it has been concluded that the most probable type of defects in magnesium doped LiNbO3 crystals are (4MgLi2+ + 4VLi) defect complexes when four Li vacancies and three MgLi2+ ions being localized in the seven nearest positions to the central MgLi2+.

References: 

1. L.Arizmendi, Phys. Stat. Sol. (a), 201, 253 (2004). http://dx.doi.org/10.1002/pssa.200303911

2. U.Schlarb, K.Betzler, Phys. Rev. B, 50, 751 (1994). http://dx.doi.org/10.1103/PhysRevB.50.751

3. D.Yu.Sugak, A.O.Matkovskii, I.M.Solskii et al., Cryst. Res. Technol., 32, 805 (1997). http://dx.doi.org/10.1002/crat.2170320612

4. T.Volk, M.Wohlecke, Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching, Berlin, Springer (2008).

5. K.Polgar, L.Kovacs, I.Foldvari et al., Solid State. Commun., 59, 375 (1986). http://dx.doi.org/10.1016/0038-1098(86)90566-1

6. L.Palfalvi, J.Hebling, G.Almasi et al., J. Appl. Phys., 95, 902 (2004). http://dx.doi.org/10.1063/1.1635993

7. F.Abidi, M.Aillerie, M.Fontana et al., Appl. Phys. B, 68, 795 (1999). http://dx.doi.org/10.1007/s003400050706

8. R.Mouras, M.Fontana, P.Bourson et al., J. Phys.:Condens. Matter., 12, 5053 (2000). http://dx.doi.org/10.1088/0953-8984/12/23/313

9. K.Lengyel, L.Kovacs, A.Peter, Appl. Phys. B, 87, 317 (2007). http://dx.doi.org/10.1007/s00340-007-2589-7

10. A.V.Yatsenko, S.V.Yevdokimov, D.Yu.Sugak et al., Acta Phys. Polonica A, 117, 166 (2010). http://dx.doi.org/10.12693/APhysPolA.117.166

11. L.Hu, Y.Chang, C.Chang et al., Modern Phys. Lett. B, 5, 789 (1991). http://dx.doi.org/10.1142/S0217984991000976

12. G.Malovichko, V.Grachev, O.Shirmer, Appl. Phys. B, 68, 785 (1999). http://dx.doi.org/10.1007/s003400050705

13. A.V.Yatsenko, H.M.Maksimova, N.A.Sergeev, Ukr. J. Phys., 44, 1390 (1999).

14. I.M.Solskii, D.Yu.Sugak, V.M.Gaba, Technologija i Konstruirovanie v Electronnoi Apparature, 5, 51 (2005).

15. C.Mignon, Y.Millot, P.Man, C. R. Chimie, 7, 425 (2004). http://dx.doi.org/10.1016/j.crci.2003.12.013

16. A.V.Yatsenko, V.A.Kornienko, Ukr. Zh. Fiz., 41, 636 (1996).

17. M.G.Shelyapina, V.S.Kasperovich, B.F.Shchegolev et al., Phys. Stat. Sol. B, 225, 171 (2001). http://dx.doi.org/10.1002/(SICI)1521-3951(200105)225:1<171::AID-PSSB171>3.0.CO;2-0

18. S.Kim, V.Gopalan, K.Kitamura et al., J. Appl. Phys., 90, 2949 (2001). http://dx.doi.org/10.1063/1.1389525

19. H.Xu, D.Lee, S.B.Sinnott et al., J. Phys.:Condens. Matter., 22, 135992 (2010).

20. G.Torchia, J.Tocho, F.Jaque, J. Phys. Chem. Solids, 63, 555 (2002). http://dx.doi.org/10.1016/S0022-3697(01)00193-7

Current number: