Funct. Mater. 2014; 21 (1): 42-46.

http://dx.doi.org/10.15407/fm21.01.042

Features of J-aggregates formation in pores of nanostructured anodic aluminum oxide

A.V.Sorokin, A.V.Voloshko, I.I.Fylymonova, I.I.Bespalova, S.L.Yefimova

Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

Features of J-aggregates formation in highly structured pores of anodic aluminum oxide (AAO) have been studied using steady-state absorption and luminescence spectroscopy and time-resolved luminescence spectroscopy. J-aggregates with different structures (spherical and thread-like) were chosen for the studying. Spectroscopic investigations show the presence of both types of the J-aggregates in the AAO pores. It leads to a static disorder increasing in the J-aggregates. Besides, in the case of the thread-like J-aggregates changes in the structure have been supposed also.

References: 

1. Nano-Optics and Near-Field Optical Microscopy, ed. by A.Zayats, D.Richards, Artech House, Boston (2009).

2. Handbook of Nanoscale Optics and Electronics, ed. by G.P.Wiederrecht, Elsevier B.V., Amsterdam (2010).

3. Macro to Nano Spectroscopy, ed. by J.Uddin, InTech, Rijeka (2012). http://dx.doi.org/10.5772/2503

4. D.Mobius, Adv. Matter., 7, 437 (1995). http://dx.doi.org/10.1002/adma.19950070503

5. .J-aggregates, ed by T.Kobayashi, World Scientific Publishing, Singapore (1996). http://dx.doi.org/10.1142/3168

6. B.I.Shapiro, Russ. Chem. Rev., 75, 433 (2006). http://dx.doi.org/10.1070/RC2006v075n05ABEH001208

7. J.Knoester, V.M.Agranovich, in: Electronic Excitations in Organic Based Nanostructures. Thin Films and Nanostructures, ed. by V.M.Agranovich and G.F.Bassani, Elsevier, Amsterdam, Oxford (2003).

8. F.Wurthner, T.E.Kaiser, Ch.R.Saha-Muller, Angew Chem. Int. Ed., 50, 3376 (2011). http://dx.doi.org/10.1002/anie.201002307

9. R.V.Markov, A.I.Plekhanov, S.G.Rautian et al., Opt. and Spectr., 85, 588 (1998).

10. V.V.Shelkovnikov, A.I.Plekhanov, N.A. Orlova, Nanotechnol. Russia, 3, 521 (2008). http://dx.doi.org/10.1134/S1995078008090012

11. A.V.Sorokin, B.A.Gnap, I.I.Fylymonova, S.L.Yefimova, Functional Materials, 19, 70 (2012).

12. A.V.Sorokin, I.I.Fylymonova, S.L.Yefimova, Yu.V.Malyukin, Opt. Mater., 32, 2091 (2012). http://dx.doi.org/10.1016/j.optmat.2012.05.003

13. G.Q.Lu, X.S.Zhao, Nanoporous Materials: Science and Engineering, Imperial College Press, London (2004).

14. Y.P.Dan, Y.Y.Cao, T.E.Mallouk et al., Sens. Actuators. B, 125, 55 (2007). http://dx.doi.org/10.1016/j.snb.2007.01.042

15. S.X. Xiong, Q.Wang, H.S.Xia, Mater. Res. Bull., 39, 1569 (2004). http://dx.doi.org/10.1016/j.materresbull.2004.01.009

16. Y.Fujiwara, Y.Amao, Sens. and Actuators, 89, 58 (2003). http://dx.doi.org/10.1016/S0925-4005(02)00428-8

17. M.Farooq, Z.H.Lee, Renew. Energy., 28, 1421 (2003). http://dx.doi.org/10.1016/S0960-1481(02)00033-2

18. Z.B.Fang, Y.Y.Wang, X.P.Peng et al., Mater. Lett., 57, 4187 (2003). http://dx.doi.org/10.1016/S0167-577X(03)00287-8

19. G.A.Wurtz, P.R.Evans, W.Hendren et al., Nano Lett., 7, 1297 (2007). http://dx.doi.org/10.1021/nl070284m

20. Q.Liu, J.Zhu, T.Sun, H.Zhou et al., RSC Adv., 3, 2765 (2013) http://dx.doi.org/10.1039/c2ra21364h

21. A.V. Voloshko, V.V.Danilina, P.V.Mateychenko, I.I.Bespalova, Functional Materials, 19, 44 (2012).

22. I.I.Fylymonova, S.L.Yefimova, A.V.Sorokin, Functional Materials, 19, 348 (2012).

23. A.N.Lebedenko, G.Ya.Guralchuk, A.V.Sorokin et al., J. Phys. Chem. B, 110, 17772 (2006). http://dx.doi.org/10.1021/jp061965t

24. G.Ya.Guralchuk, I.K.Katrunov, R.S.Grynyov et al., J. Phys. Chem. C, 112, 14762 (2008). http://dx.doi.org/10.1021/jp802933n

25. A.V.Sorokin, I.I.Fylymonova, N.V.Pereverzev, S.L.Yefimova, Functional Materials, 19, 498 (2012).

Current number: