Funct. Mater. 2014; 21 (2): 190-194.

http://dx.doi.org/10.15407/fm21.02.190

Multi-walled vs. single-walled carbon nanotube dispersions in nematic liquid crystals: comparative studies of optical transmission and dielectric properties

A.N.Samoilov[1], S.S.Minenko[1], A.P.Fedoryako[1], L.N.Lisetski[1], N.I.Lebovka[2], M.S.Soskin[3]

[1] Institute for Scintillation Materials STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine
[2] F.Ovcharenko Institute of Biocolloidal Chemistry, National Academy of Sciences of Ukraine, 42 Vernadsky Ave., 03142 Kyiv, Ukraine
[3] Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave., 03028 Kyiv, Ukraine

Abstract: 

Comparative studies have been carried out of multi-walled and single-walled carbon nanotubes (CNT) dispersed in nematic liquid crystal matrix. Under strictly similar experimental conditions (5CB nematic host, the same supplier of CNTs, the same 50μm thick cell for optical and dielectric measurements, the same CNT concentration range, identical procedures of optical transmission vs. temperature and complex dielectric permittivity measurements), differences between single- walled and multi-walled CNTs were recorded. The most distinct differences were 3-4 times higher optical density and noticeably higher effect upon dielectric permittivity in the low-frequency range noted for single-walled CNTs, which could be clearly attributed to the difference in the specific surface area of single- and multi-walled carbon nanotubes.

References: 

1. M.Rahman, W.Lee, J. Phys. D: Appl. Phys., 42, 063001 (2009). http://dx.doi.org/10.1088/0022-3727/42/6/063001

2. O.Stamatoiu, J.Mirzaei, X.Feng, T.Hegmann, Top. Curr. Chem., 318, 331 (2012). http://dx.doi.org/10.1007/128_2011_233

3. J.P.F.Lagerwall, G.Scalia, Curr. Appl. Phys., 12, 1387 (2012). http://dx.doi.org/10.1016/j.cap.2012.03.019

4. S.Schymura, G.Scalia, Phil. Trans. Roy. Soc. A, 371, 2012021 (2013). http://dx.doi.org/10.1098/rsta.2012.0261

5. M.Kuhnast, C.Tschierske, J.Lagerwall, Chem. Commun., 46, 6989 (2010). http://dx.doi.org/10.1039/c0cc02353a

6. Y.Ji, Y.Y.Huang, E.M.Terentjev, Langmuir, 27, 13254 (2011). http://dx.doi.org/10.1021/la202790a

7. L.N.Lisetski, N.I.Lebovka, S.V.Naydenov, M.S.Soskin, J. Mol. Liq., 164, 143 (2011). http://dx.doi.org/10.1016/j.molliq.2011.04.020

8. N.I.Lebovka, L.N.Lisetski, M.I.Nesterenko et al., Liq. Cryst., 40, 968 (2013). http://dx.doi.org/10.1080/02678292.2013.786796

9. S.K.Prasad, M.V.Kumar, C.V.Yelamaggad, Carbon, 59, 512 (2013). http://dx.doi.org/10.1016/j.carbon.2013.03.047

10. F.-C.Lin, P.-C.Wu, B.-R.Jian, W.Lee, Adv. Cond. Matt. Phys. (Hindawi), 2013, Art. ID 271574 (2013).

11. C.Cirtoaje, E.Petrescu, C.Motoc, Physica E, 54, 242 (2013). http://dx.doi.org/10.1016/j.physe.2013.07.005

12. A.I.Goncharuk, N.I.Lebovka, L.N.Lisetski, S.S.Minenko, J. Phys. D: Appl. Phys., 42, 165411 (2009). http://dx.doi.org/10.1088/0022-3727/42/16/165411

13. L.N.Lisetski, S.S.Minenko, A.P.Fedoryako, N.I.Lebovka, Physica E, 41, 431 (2009). http://dx.doi.org/10.1016/j.physe.2008.09.004

14. O.Trushkevych, F.Golden, M.Pivnenko et al., Electron. Lett., 46, 693 (2010). http://dx.doi.org/10.1049/el.2010.0752

15. B.-R.Jian, C.-Y.Tang, W.Lee, Carbon, 49, 910 (2011). http://dx.doi.org/10.1016/j.carbon.2010.11.001

16. A.Y.-G.Fuh, W.Lee, K.Y.-C.Huang, Liq. Cryst., 40, 745 (2013). http://dx.doi.org/10.1080/02678292.2013.783935

17. I.Gvozdovskyy, O.Yaroshchuk, M.Serbina, R.Yamaguchi, Opt. Express, 20, 3499 (2012). http://dx.doi.org/10.1364/OE.20.003499

18. O.Yaroshchuk, S.Tomylko, I.Gvozdovskyy, R.Yamaguchi, Appl. Optics, 52, E53 (2013). http://dx.doi.org/10.1364/AO.52.000E53

19. L.N.Lisetski, S.S.Minenko, V.V.Ponevchinsky, et al., Mat. Sci. Eng. Technol., 42, 5 (2011).

20. L.N.Lisetski, S.S.Minenko, A.V.Zhukov, et al., Mol. Cryst. Liq. Cryst., 510, 43 (2009).

21. C.Laurent, E.Flahaut, A.Peigney, Carbon, 48, 2994 (2010). http://dx.doi.org/10.1016/j.carbon.2010.04.010

Current number: