Funct. Mater. 2014; 21 (2): 211-216.

http://dx.doi.org/10.15407/fm21.02.211

Polariton dispersion dependence on concentration of admixture in imperfect superlattice of coupled microresonators

A.P.Alodjants[1], V.V.Rumyantsev[2], S.A.Fedorov[2], M.V.Proskurenko[2]

[1] Vladimir State University, 87 Gorky Str., 600000 Vladimir, Russia
[2] A.Galkin Physico-Technical Institute, National Academy of Sciences of Ukraine, 72 R.Luxembourg Str., 83114 Donetsk, Ukraine

Abstract: 

Based on the representations of the ideal of photonic structures, the non-ideal systems of this class - polaritonic crystal, which is a set of spatially ordered cavities containing atomic clusters, is considered in the paper. Moreover, the spatial distribution of cavities (resonators) is translation invariant, and the atomic subsystem has randomly distributed defects: impurity atomic clusters (quantum dots) or a vacancies. Numerical modeling of dependence of the dispersion of polaritons in this imperfect superlattice of associated microresonators on impurity concentration is completed. Using the virtual crystal approximation the analytical expressions for polaritonic frequencies, effective mass and group velocities, as a function of corresponding quantum dots and vacancies concentrations, is obtained.

References: 

1. P.W.Milonni, Fast Light, Slow Light and Left-Handed Light, Institute of Physics Publishing, Bristol (2005).

2. Z.S.Yang, N.H.Kwong, R.Binder, A.L.Smirl, J. Opt. Soc. Am. B, 22, 2144 (2005). http://dx.doi.org/10.1364/JOSAB.22.002144

3. H.Gersen, T.J.Karle, R.J.P.Engelen et al., Phys. Rev. Lett., 94, 073903 (2005). http://dx.doi.org/10.1103/PhysRevLett.94.073903

4. A.V.Turukhin, V.S.Sudarshanam, M.S.Shahriar et al., Phys. Rev. Lett., 88, 023602-1 (2002). http://dx.doi.org/10.1103/PhysRevLett.88.023602

5. U.Vogl, M.Weitz, Phys. Rev. A, 78, 011401 (2008). http://dx.doi.org/10.1103/PhysRevA.78.011401

6. T.Aoki, B.Dayan, E.Wilcut et al., Nature, 443, 671 (2006). http://dx.doi.org/10.1038/nature05147

7. M.J.Hartmann, F.Brandao, M.B.Plenio, Nature, 2, 849 (2006).

8. L.Zhou, J.Lu, C.P.Sun, Phys. Rev. A, 76, 012313 (2007). http://dx.doi.org/10.1103/PhysRevA.76.012313

9. J.D.Joannopoulos, S.G.Johnson, J.N.Winn et al., Photonic Crystals. Molding the Flow of Light, 2-nd Edition, Princeton University Press, Princeton (2008).

10. E.S.Sedov, A.P.Alodjants, S.M.Arakelian et al., Phys. Rev. A, 84, 013813 (2011). http://dx.doi.org/10.1103/PhysRevA.84.013813

11. E.L.Albuquerque, M.G.Cottam, Polaritons in Periodic and Quasi Periodic Structures, Elsevier, Amsterdam (2004).

12. A.P.Alodjants, I.O.Barinov, S.M.Arakelian, Phys. B, 43, 095502 (2010). http://dx.doi.org/10.1088/0953-4075/43/9/095502

13. R.H.Parmenter, Phys. Rev., 97, 587 (1955). http://dx.doi.org/10.1103/PhysRev.97.587

14. A.Smerzi, A.Trombettoni, P.G.Kevrekidis, A.R.Bishop, Phys. Rev. Lett., 89, 170402-1 (2002). http://dx.doi.org/10.1103/PhysRevLett.89.170402

15. V.V.Rumyantsev, S.A.Fedorov, K.V.Gumennyk, Photonic Crystals: Optical Properties, Fabrication and Applications, ed. by William L.Dahl, Nova Science Publishers, Inc. NY: (2011).

16. V.V.Rumyantsev, A.P.Alodjants, S.A.Fedorov, Photonic and Electronic Excitations in Nonideal Superlattices, LAP LAMBERT Academic Publishing, Saarbrucken, Germany: (2013).

17. J.M.Ziman, Models of Disorder, John Willey & Sons, New York (1979).

18. J.R.Anglin, A.Vardi, Phys. Rev. A, 64, 013605 (2001). http://dx.doi.org/10.1103/PhysRevA.64.013605

19. A.P.Alodjants, S.M.Arakelian, A.Yu.Leksin, Laser Phys., 17, 1432 (2007). http://dx.doi.org/10.1134/S1054660X07120146

20. V.A.Averchenko, A.P.Alodzhants, S.M. Arakelyan et al., Quant. Electron., 36, 532 (2006). http://dx.doi.org/10.1070/QE2006v036n06ABEH013228

Current number: