Funct. Mater. 2014; 21 (2): 152-157.

http://dx.doi.org/10.15407/fm21.02.152

Role of shallow electronic traps formed by oxygen vacancies in formation of luminescent properties of CeO2-x nanocrystals

P.O.Maksimchuk, V.V.Seminko, I.I.Bespalova, A.A.Masalov

Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

In the paper methods of thermoluminescence (TSL) and time-resolved spectroscopy were used for investigation of shallow electron traps near edge of 4f0 band in CeO2 and nonstoichiometric CeO2-x nanocrystals. It was shown that presence of the electronic traps located about 0.2 eV lower than the bottom of 4f0 band leads to sufficient modification of O2p-Ce4f excitation relaxation processes due to excitation retrapping. Strong dependence of TSL signal on the stoichiometry of nanocrystal allows to suppose that electronic defects are associated with oxygen vacancies and are formed by F+ centers.

References: 

1. Z.Zhan, S.A.Barnett, Science, 308, 844 (2005). http://dx.doi.org/10.1126/science.1109213

2. D.R.Ou, T.Mori, H.Togasaki et al., Langmuir, 27, 3859 (2011). http://dx.doi.org/10.1021/la1032898

3. Z.C.Kang, Z.L.Wang, Adv. Mater., 15, 521 (2003). http://dx.doi.org/10.1002/adma.200390121

4. H.Imagawa, A.Suda, K.Yamamura, S.Sun, J. Phys. Chem. C, 115, 1740 (2011). http://dx.doi.org/10.1021/jp109878j

5. R.W.Tarnuzzer, J.Colon, S.Patil, S.Seal, Nano Lett., 5, 2573 (2005). http://dx.doi.org/10.1021/nl052024f

6. E.-J.Park, J.Choi, Y.-K.Park, K.Park, Toxicology, 245, 90 (2008). http://dx.doi.org/10.1016/j.tox.2007.12.022

7. H.L.Tuller, A.S.Nowick, J. Electrochem. Soc., 126, 209 (1979). http://dx.doi.org/10.1149/1.2129007

8. P.Kofstad, A.Z.Hed, J. Amer. Cer. Soc., 50, 681 (1967). http://dx.doi.org/10.1111/j.1151-2916.1967.tb15030.x

9. A.Trovarelli, Catalysis by Ceria and Related Materials, World Scientific Publishing Company, New York (2002).

10. S.Mochizuki, F.Fujishiro, Phys. Stat. Sol. (b), 246, 2320 (2009). http://dx.doi.org/10.1002/pssb.200844419

11. S.Askrabic, Z.D.Dohcevic-Mitrovic, V.D.Araujo et al., J. Physics D: Appl. Phys., 46, 495306 (2013). http://dx.doi.org/10.1088/0022-3727/46/49/495306

12. A.Masalov, O.Viagin, P.Maksimchuk et al., J. Luminescence, 145, 61 (2014). http://dx.doi.org/10.1016/j.jlumin.2013.07.020

13. X.Han, J.Lee, H.Yoo, Phys. Rev. B, 79, 10040310 (2009).

14. A.Serra, V.Severino, P.Calefi, S.Cicillini, J. Alloys Compd., 323-324, 667 (2001). http://dx.doi.org/10.1016/S0925-8388(01)01061-1

15. P.O.Maksimchuk, A.A.Masalov, Yu.V.Malyukin, J. Nano- and Electron. Phys., 5, 01004 (2013).

16. W.M.Yen, Sh.Shionoya, H.Yamamoto, Phosphor Handbook, 2d ed. CRC Press, Boca Raton (2007).

17. F.I.Adirovitch, J. Phys. Radium., 17, 705 (1956). http://dx.doi.org/10.1051/jphysrad:01956001708-9070500

18. S.W.S.McKeever, Thermoluminescence of Solids, Cambridge University Press, London (1985).

19. R.Chen, Y.Kirsh, Analysis of Thermally Stimulated Processes, v.15, Pergamon Press, Oxford (1981).

20. J.T.Randall, M.H.F.Wilkins, Proc. R. Soc. London Ser. A, 184, 366 (1945).

21. G.E.J.Garlick, A.F.Gibson, Proc. Phys. Soc., 60, 574 (1948). http://dx.doi.org/10.1088/0959-5309/60/6/308

22. M.M.Elkholy, Mater. Chem. and Phys., 77, 321 (2002). http://dx.doi.org/10.1016/S0254-0584(01)00538-7

23. A.Halperin, A.A.Braner, Phys. Rev., 117, 408 (1960). http://dx.doi.org/10.1103/PhysRev.117.408

Current number: