Funct. Mater. 2014; 21 (2): 164-170.
The structure, phase and chemical composition of CZTSe thin films
[1] Sumy State University, 2 Rimsky-Korsakov Str., 40007 Sumy, Ukraine
[2] Sogang University, 1 Shinsu-dong, Mapo-gu, 121-742 Seoul, Korea
[3] Department of Physics, Ewha Womans University, 120-750 Seoul, Korea
[4] Institute of Applied Physics, National Academy of Sciences of Ukraine, 58 Petropavlovskaya Str., 40000 Sumy, Ukraine
Cu2ZnSnSe4 thin films obtained by co-evaporation of components using an electron beam evaporation system were investigated by scanning electron microscopy, X-ray analysis, PIXI and RBS methods. The analysis of the diffraction patterns showed that the films are almost single-phased and contain mainly CZTSe compound, which has a tetragonal kesterite lattice type. The samples have textural growth of [211]. The lattice parameters of the material varied in the range of a = (0.56640-0.56867) nm, c = (1.13466-1.13776) nm, c/2a = 0.9983-1.0017 which correlate well with the reference data in a stable phase CZTSe compounds. From our PIXE analyses we assessed the influence of the growth conditions on the samples chemical composition and mapped the surface distribution.
1. I.S.Babichuk, V.O.Yukhymchuk, V.M.Dzhagan et al., Functional Materials, 20, 186 (2013). http://dx.doi.org/10.15407/fm20.02.186
2. G.S.Babu, Y.B.K.Kumar, P.U.Bhashkar et al., J. Phys. D: Appl. Phys., 41, 205305 (2008). http://dx.doi.org/10.1088/0022-3727/41/20/205305
3. J.J.Scragg, P.J.Dale, L.M.Peter et al., Phys. Status Solidi B, 245, 1772 (2008). http://dx.doi.org/10.1002/pssb.200879539
4. A.S.Opanasyuk, D.I.Kurbatov, H. Cheong et al., J. Nano- and Electron. Phys., 4, 01024-1 (2012).
5. M.Ganchev, J.Iljina, L.Kaupmees et al., Thin Solid Films, 519, 7394 (2011). http://dx.doi.org/10.1016/j.tsf.2011.01.388
6. A.Redinger, K.Hones, X.Fontane et al., Appl. Phys. Lett., 98, 101907-1 (2011). http://dx.doi.org/10.1063/1.3558706
7. J.Li, T.Ma, M.Wei et al., Appl. Surf. Sci., 258, 6261 (2012). http://dx.doi.org/10.1016/j.apsusc.2012.03.006
8. D.B.Mitzi, O.Gunawan, T.K.Todorov et al., Solar Energ, Mat., 95, 1421 (2011). http://dx.doi.org/10.1016/j.solmat.2010.11.028
9. K.Wang, B.Shin, K.B.Reuter et al., Appl. Phys. Lett., 98, 051912-1 (2011). http://dx.doi.org/10.1063/1.3543621
10. W.Wang et al., Adv. Energy Mat., DOI: 10.1002/aenm.201301465 (2013). http://dx.doi.org/10.1002/aenm.201301465
11. T.K.Todorov, J.Tang, S.Bag et al., Adv. Energy Mat., 3, 34 (2013). http://dx.doi.org/10.1002/aenm.201200348
12. B.Schubert, B.Marsen, S.Cinque et al., Prog. Photovoltaics, 19, 93 (2011). http://dx.doi.org/10.1002/pip.976
13. G.Zoppi, I.Forbes, R.W.Miles et al., Progr. in Photovoltaics: Research and Applications, 17, 315 (2009). http://dx.doi.org/10.1002/pip.886
14. L.Guo, Y.Zhu, O.Gunawan et al., Progress in Photovoltaics: Res. and Appl., DOI: 10.1002/pip.2332 (2013). http://dx.doi.org/10.1002/pip.2332
15. S.Y.Kim, J.H.Kim, Thin Solid Films, DOI: 10.1016/j.tsf.2013.03.094 (2013). http://dx.doi.org/10.1016/j.tsf.2013.03.094
16. S.J.Ahn, S.Jung, J.Gwak et al., Appl. Phys. Lett., 97, 021905-1 (2010). http://dx.doi.org/10.1063/1.3457172
17. D.Park, D.Nam, S.Jung et al., Thin Solid Films, 519, 7386 (2011). http://dx.doi.org/10.1016/j.tsf.2011.01.142
18. Selected Powder Diffraction Data for Education Straining (Search Manual and Data Cards), Published by the Intern. Centre for Diffraction Data, 432 (1997).
19. B.E.Warren, X-ray Diffraction, Dover Books on Physics, New York (1990).
20. Ja.S.Umanskij, Ju.A.Skakov, A.N.Ivanov et al., Crystallogaphy, X-ray Graph and Electronmicroscopy, Metallurgy, Moscow (1982) [in Russian].
21. V.V. Kosyak, D.I.Kurbatov, M.M.Kolesnyk et al., J. Mater. Chem. and Phys., 138, 731 (2013). http://dx.doi.org/10.1016/j.matchemphys.2012.12.049
22. M.B.H.Breese, D.N.Jamieson, P.J.C.King, Materials Analysis Using a Nuclear Microprobe, John Wiley & Sons. Ins., New York (1996).
23. V.E.Storizhko, A.G.Ponomarev, V.A.Rebrov et al., Nucl. Instr. Meth. Phys. Res., 260, 49 (2007). http://dx.doi.org/10.1016/j.nimb.2007.01.250
24. F.Weinberg, Tools and Techniques in Physical Metallurgy, New York, M.Dekker (1973).
25. A.B.Kramchenkov, O.O.Drozdenko, M.I.Zakharets, Metallofizika i Noveishie Tekhnologii, 30, 453 (2008).
26. I.D.Olekseyuk, L.D.Gulay, I.V.Dydchak et al., J. Alloys Comp., 340, 141 (2002). http://dx.doi.org/10.1016/S0925-8388(02)00006-3