Funct. Mater. 2014; 21 (2): 164-170.

http://dx.doi.org/10.15407/fm21.02.164

The structure, phase and chemical composition of CZTSe thin films

A.S.Opanasyuk[1], P.V.Koval[1], D.Nam[2], H.Cheong[2], A.R.Jeong[3], W.Jo[3], A.G.Ponomarev[4]

[1] Sumy State University, 2 Rimsky-Korsakov Str., 40007 Sumy, Ukraine
[2] Sogang University, 1 Shinsu-dong, Mapo-gu, 121-742 Seoul, Korea
[3] Department of Physics, Ewha Womans University, 120-750 Seoul, Korea
[4] Institute of Applied Physics, National Academy of Sciences of Ukraine, 58 Petropavlovskaya Str., 40000 Sumy, Ukraine

Abstract: 

Cu2ZnSnSe4 thin films obtained by co-evaporation of components using an electron beam evaporation system were investigated by scanning electron microscopy, X-ray analysis, PIXI and RBS methods. The analysis of the diffraction patterns showed that the films are almost single-phased and contain mainly CZTSe compound, which has a tetragonal kesterite lattice type. The samples have textural growth of [211]. The lattice parameters of the material varied in the range of a = (0.56640-0.56867) nm, c = (1.13466-1.13776) nm, c/2a = 0.9983-1.0017 which correlate well with the reference data in a stable phase CZTSe compounds. From our PIXE analyses we assessed the influence of the growth conditions on the samples chemical composition and mapped the surface distribution.

References: 

1. I.S.Babichuk, V.O.Yukhymchuk, V.M.Dzhagan et al., Functional Materials, 20, 186 (2013). http://dx.doi.org/10.15407/fm20.02.186

2. G.S.Babu, Y.B.K.Kumar, P.U.Bhashkar et al., J. Phys. D: Appl. Phys., 41, 205305 (2008). http://dx.doi.org/10.1088/0022-3727/41/20/205305

3. J.J.Scragg, P.J.Dale, L.M.Peter et al., Phys. Status Solidi B, 245, 1772 (2008). http://dx.doi.org/10.1002/pssb.200879539

4. A.S.Opanasyuk, D.I.Kurbatov, H. Cheong et al., J. Nano- and Electron. Phys., 4, 01024-1 (2012).

5. M.Ganchev, J.Iljina, L.Kaupmees et al., Thin Solid Films, 519, 7394 (2011). http://dx.doi.org/10.1016/j.tsf.2011.01.388

6. A.Redinger, K.Hones, X.Fontane et al., Appl. Phys. Lett., 98, 101907-1 (2011). http://dx.doi.org/10.1063/1.3558706

7. J.Li, T.Ma, M.Wei et al., Appl. Surf. Sci., 258, 6261 (2012). http://dx.doi.org/10.1016/j.apsusc.2012.03.006

8. D.B.Mitzi, O.Gunawan, T.K.Todorov et al., Solar Energ, Mat., 95, 1421 (2011). http://dx.doi.org/10.1016/j.solmat.2010.11.028

9. K.Wang, B.Shin, K.B.Reuter et al., Appl. Phys. Lett., 98, 051912-1 (2011). http://dx.doi.org/10.1063/1.3543621

10. W.Wang et al., Adv. Energy Mat., DOI: 10.1002/aenm.201301465 (2013). http://dx.doi.org/10.1002/aenm.201301465

11. T.K.Todorov, J.Tang, S.Bag et al., Adv. Energy Mat., 3, 34 (2013). http://dx.doi.org/10.1002/aenm.201200348

12. B.Schubert, B.Marsen, S.Cinque et al., Prog. Photovoltaics, 19, 93 (2011). http://dx.doi.org/10.1002/pip.976

13. G.Zoppi, I.Forbes, R.W.Miles et al., Progr. in Photovoltaics: Research and Applications, 17, 315 (2009). http://dx.doi.org/10.1002/pip.886

14. L.Guo, Y.Zhu, O.Gunawan et al., Progress in Photovoltaics: Res. and Appl., DOI: 10.1002/pip.2332 (2013). http://dx.doi.org/10.1002/pip.2332

15. S.Y.Kim, J.H.Kim, Thin Solid Films, DOI: 10.1016/j.tsf.2013.03.094 (2013). http://dx.doi.org/10.1016/j.tsf.2013.03.094

16. S.J.Ahn, S.Jung, J.Gwak et al., Appl. Phys. Lett., 97, 021905-1 (2010). http://dx.doi.org/10.1063/1.3457172

17. D.Park, D.Nam, S.Jung et al., Thin Solid Films, 519, 7386 (2011). http://dx.doi.org/10.1016/j.tsf.2011.01.142

18. Selected Powder Diffraction Data for Education Straining (Search Manual and Data Cards), Published by the Intern. Centre for Diffraction Data, 432 (1997).

19. B.E.Warren, X-ray Diffraction, Dover Books on Physics, New York (1990).

20. Ja.S.Umanskij, Ju.A.Skakov, A.N.Ivanov et al., Crystallogaphy, X-ray Graph and Electronmicroscopy, Metallurgy, Moscow (1982) [in Russian].

21. V.V. Kosyak, D.I.Kurbatov, M.M.Kolesnyk et al., J. Mater. Chem. and Phys., 138, 731 (2013). http://dx.doi.org/10.1016/j.matchemphys.2012.12.049

22. M.B.H.Breese, D.N.Jamieson, P.J.C.King, Materials Analysis Using a Nuclear Microprobe, John Wiley & Sons. Ins., New York (1996).

23. V.E.Storizhko, A.G.Ponomarev, V.A.Rebrov et al., Nucl. Instr. Meth. Phys. Res., 260, 49 (2007). http://dx.doi.org/10.1016/j.nimb.2007.01.250

24. F.Weinberg, Tools and Techniques in Physical Metallurgy, New York, M.Dekker (1973).

25. A.B.Kramchenkov, O.O.Drozdenko, M.I.Zakharets, Metallofizika i Noveishie Tekhnologii, 30, 453 (2008).

26. I.D.Olekseyuk, L.D.Gulay, I.V.Dydchak et al., J. Alloys Comp., 340, 141 (2002). http://dx.doi.org/10.1016/S0925-8388(02)00006-3

Current number: