Вы здесь

Funct. Mater. 2014; 21 (3): 318-323.

http://dx.doi.org/10.15407/fm21.03.318

Formation and evolution of intermixing zones in C/Si multilayer under heating

I.A.Zhuravel[1], Ye.A.Bugayev[1], A.V.Penkov[2], E.N.Zubarev[1], V.A.Sevryukova[1], V.V.Kondratenko[1]

[1] National Technical University "Kharkiv Polytechnic Institute", 27 Frunze Str., 61002 Kharkiv, Ukraine
[2] Center for Nano-Wear Yonsei University 50 Yonsei-ro, Seodaemun-gu 120-749 Seoul, Republic of Korea

Abstract: 

Formation of intermixing zones, their structure and phase composition in C/Si multilayers in as-deposited state and after annealing are studied. During deposition intermixing zones of ∼ 0.6 m thick are formed at both silicon/carbon and carbon/silicon interfaces. The zone formed at C-on-Si interlayer is denser than adjacent zone due to amorphous SiC nucleation. Both the thickness and the densities of intermixing zones increase with annealing temperature up to 800°C. Silicon carbide is revealed in Si-on-C zone at 700°C. Structure of the zones is still amorphous at 950°C.

References: 

1. C.Subramanian, K.N.Strafford, Wear, 165, 85 (1993). http://dx.doi.org/10.1016/0043-1648(93)90376-W

2. E.A.Spiller, Soft X-Ray Optics, SPIE Press Book, Bellingham (1994). http://dx.doi.org/10.1117/3.176482

3. U.Hartmann, H.A.M. van den Berg, R.Coehoorn et al., Magnetic Multilayers and Giant Magnetoresistance, Springer-Verlag Berlin Heidelberg, Berlin (2000). http://dx.doi.org/10.1007/978-3-662-04121-5

4. M.R.Etminanfar, M.Heydarzadeh Sohi, Thin Solid Films, 520, 5322 (2012). http://dx.doi.org/10.1016/j.tsf.2012.03.127

5. V.V.Kondratenko, Y.P.Pershin, O.V.Poltseva et al., Appl. Opt., 32, 1811 (1993). http://dx.doi.org/10.1364/AO.32.001811

6. A.V.Vinogradov, Yu.P.Pershin, E.N.Zubarev et al., Proc. SPIE, 4505, 230 (2001). http://dx.doi.org/10.1117/12.450595

7. C.Eberl, T.Liese, F.Schlenkrich et al., Appl. Phys. A, 111, 431 (2013). http://dx.doi.org/10.1007/s00339-013-7587-5

8. O.V.Penkov, Ye.A.Bugayev, I.Zhuravel et al., Tribology Lett., 48, 123 (2012). http://dx.doi.org/10.1007/s11249-012-0008-7

9. C.K.Chung, T.Y.Chen, C.W.Lai, J. Nanopart. Res., 13, 4821 (2011). http://dx.doi.org/10.1007/s11051-011-0460-6

10. X.An, F.Liu, Y.J.Jung, S.Kar, Nano Lett., 13, 909 (2013). http://dx.doi.org/10.1021/nl303682j

11. D.A.Shirley, Phys. Rew. B, 5, 4709 (1972). http://dx.doi.org/10.1103/PhysRevB.5.4709

12. T.W.Barbee, Opt. Engin., 25(8), 899 (1986). http://dx.doi.org/10.1117/12.7973929

13. D.T.Attwood, B.L.Henke, Low Energy X-ray Diagnostics, American Institute of Physics, New York (1981).

14. J.D.Jackson, Classical Electrodynamics, 2nd ed., John Wiley and Sons, New York (1975).

15. I.A.Zhuravel, Ye.A.Bugayev, L.Ye.Konotopsky et al., Zh. Technicheskoy Fiziki, 84, 71 (2014).

16. I.A.Zhuravel, Ye.A.Bugayev, O.V.Penkov et al., Phys. Surf. Engin., 12(1), 20 (2014).

Current number: