Funct. Mater. 2014; 21 (3): 255-259.

http://dx.doi.org/10.15407/fm22.03.255

Influence of CeO2 nanocrystals size on the vacancies formation processes determined by spectroscopic techniques

P.O.Maksimchuk, V.V.Seminko, I.I.Bespalova, A.A.Masalov

Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

In the paper influence of the size on the processes of oxygen vacancies formation in CeO2 nanocrystals has been investigated. Changes in concentration of oxygen vacancies were determined by two independent indicators: intensity of 5d → 4f luminescence of Ce3+ ions and ratio between 5D07F1 and 5D07F2 luminescence bands of Eu3+ ions incorporated into ceria nanocrystals as structural probes. It was shown that for CeO2 nanocrystals decrease of the size (from 75 nm to 20 nm) manifests itself in 1.5 times increase of the band intensity associated with vacancy-stabilized Ce3+ ions, while for CeO2:Eu3+ nanocrystals it leads to lowering of symmetry for Eu3+ centre and correspondent decrease of 5D07F1/5D07F2 intensity ratio. It was shown that decrease of the size stimulates formation of the oxygen vacancies in ceria nanoparticles.

References: 

1. M.Mogensen, T.Lindegaard, U.R.Hansen, G.Mogensen, J. Electrochem. Soc., 141, 2122 (1994). http://dx.doi.org/10.1149/1.2055072

2. S.Park, J.M.Vohs, R.J.Gorte, Nature, 404, 265 (2000). http://dx.doi.org/10.1038/35005040

3. H.Devianto, S.P.Yoon, S.W.Nam et al., J. Power Sources, 159, 1147 (2006). http://dx.doi.org/10.1016/j.jpowsour.2005.11.092

4. A.S.Karakoti, N.A.Monteiro-Riviere, R.Aggarwal et al., JOM, 60, 33 (2008). http://dx.doi.org/10.1007/s11837-008-0029-8

5. N.V.Skorodumova, S.I.Simak, B.I.Lundqvist et al., Phys. Rev. Lett., 89, 166601 (2002). http://dx.doi.org/10.1103/PhysRevLett.89.166601

6. P.Dutta, S.Pal, M.S.Seehra et al., Chem. Mater., 18, 5144 (2006). http://dx.doi.org/10.1021/cm061580n

7. S.Deshpande, S.Patil, S.Kuchibhatla, S.Seal, Appl. Phys. Lett., 87, 133113:1-3 (2005).

8. A.Masalov, O.Viagin, P.Maksimchuk et al., J. Luminescence, 145, 61 (2014). http://dx.doi.org/10.1016/j.jlumin.2013.07.020

9. B.Tiseanu, V.I.Parvulescu, M.Sanchez-Dominguez, M.Boutonnet, J. Appl. Phys., 112, 013521 (2012) http://dx.doi.org/10.1063/1.4730609

10. M.Makayama, M.Martin, Phys. Chem. Chem. Phys., 11, 3241 (2009). http://dx.doi.org/10.1039/b900162j

11. A.Kumar, S.Babu, A.S.Karakoti et al., Langmuir, 25, 10998 (2009). http://dx.doi.org/10.1021/la901298q

12. M.Buijs, A.Meyerink, G.Blasse, J. Luminescence, 37, 9 (1987). http://dx.doi.org/10.1016/0022-2313(87)90177-3

13. Y.M.Chiang, E.B.Lavik, I.Kosacki et al., Appl. Phys. Lett., 69, 185 (1996). http://dx.doi.org/10.1063/1.117366

Current number: