Funct. Mater. 2014; 21 (4): 373-378.

http://dx.doi.org/10.15407/fm21.04.373

Dispersions of carbon nanotubes in cholesteric liquid crystals with photoactive components

A.N.Samoilov[1], S.S.Minenko[1], L.N.Lisetski[1], N.I.Lebovka[2], M.S.Soskin[3], S.I.Torgova[4]

[1] Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine
[2] F.Ovcharenko Institute of Biocolloidal Chemistry, National Academy of Sciences of Ukraine, 42 Vernadsky Ave., 03142 Kyiv, Ukraine
[3] Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave., 03028 Kyiv, Ukraine
[4] P.Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninskii Ave., 119991 Moscow, Russia

Abstract: 

Optical transmission and selective reflection data are reported for dispersions of single-walled carbon nanotubes (SWCNT) in cholesteric liquid crystals comprising a mixture of cholesterol esters and azoxy nematic ZhK-440. The optical density was shown to be essentially non-linear with SWCNT concentration, with a minimum ascribed to formation of "stacked" aggregates of nanotubes. The location of this minimum, as well as the selective reflection maximum (helical pitch), are sensitive to partially reversible UV-induced trans-cis-trans isomerisation effects. The UV-controlled helical pitch variation was shown to be only slightly affected by introduction of carbon nanotubes. Application prospects of such materials in optoelectronic devices are considered.

References: 

1. M.Rahman, W.Lee, J.Phys.D:Appl.Phys., 42, 063001 (2009). http://dx.doi.org/10.1088/0022-3727/42/6/063001

2. J.P.F.Lagerwall, G.Scalia, Curr. Appl. Phys., 12, 1387 (2012). http://dx.doi.org/10.1016/j.cap.2012.03.019

3. L.N.Lisetski, S.S.Minenko, A.P.Fedoryako, in: Functional Materials for Scintillation Techniques and Biomedicine, ISMA, Kharkov (2012), p.245 [in Russian].

4. S.Schymura, G.Scalia, Phil. Trans. Roy. Soc. A, 371, 2012021 (2013). http://dx.doi.org/10.1098/rsta.2012.0261

5. M.Kuhnast, C.Tschierske, J.Lagerwall, Chem. Commun., 46, 6989 (2010). http://dx.doi.org/10.1039/c0cc02353a

6. Y.Ji, Y.Y.Huang, E.M.Terentjev, Langmuir, 27, 13254 (2011). http://dx.doi.org/10.1021/la202790a

7. Y.J.Lim, S.S.Bhattacharya, W.Tie et al., Liq. Cryst., 40, 2002 (2013). http://dx.doi.org/10.1080/02678292.2013.806997

8. M.D.Lynch, D.L.Patrick, Nano Lett., 2, 1197 (2002). http://dx.doi.org/10.1021/nl025694j

9. O.Trushkevych, F.Golden, M.Pivnenko et al., Electron Lett., 46, 693 (2010). http://dx.doi.org/10.1049/el.2010.0752

10. S.S.Minenko, L.N.Lisetski, A.I.Goncharuk et al., Functional Materials, 17, 454 (2010).

11. L.N.Lisetski, N.I.Lebovka, S.V.Naydenov, M.S.Soskin. J. Mol. Liq., 164, 143 (2011). http://dx.doi.org/10.1016/j.molliq.2011.04.020

12. L.N.Lisetski, S.S.Minenko, V.V.Ponevchinsky et al., Mat. Sci. Eng. Technol., 42, 5 (2011).

13. A.M.Chepikov, S.S.Minenko, L.N.Lisetski et al., Functional Materials, 19, 343 (2012).

14. L.N.Lisetski, S.S.Minenko, A.P.Fedoryako et al., Functional Materials, 20, 153 (2013). http://dx.doi.org/10.15407/fm20.02.153

15. N.I.Lebovka, L.N.Lisetski, M.I.Nesterenko et al., Liquid Crystals, 40, 968 (2013). http://dx.doi.org/10.1080/02678292.2013.786796

16. P.Oswald, in: Phase Transitions, Application to Liquid Crystals, Electric and Electrooptic Fields, ed. V.Popa-Nita, Research Signpost, Trivandrum (2006), Chapt.​3, p.47.

17. L.M.Blinov, Structure and Properties of Liquid Crystals, Springer, Dordrecht e.a. (2011).

18. I.Il'chishin, L.Lysetskiy, T.Mykytyuk et al., Mol. Cryst. Liq. Cryst., 542, 221 (2011).

19. I.P.Ilchishin, L.N.Lisetski, T.V.Mykytiuk, Opt. Mat. Express, 1, 1484 (2011). http://dx.doi.org/10.1364/OME.1.001484

20. O.Yaroshchuk, S.Tomilko, I.Gvozdovskyy, R.Yamaguchi, Appl. Opt., 52, E53 (2013). http://dx.doi.org/10.1364/AO.52.000E53

21. I.Gvozdovskyy, O.Yaroshchuk, M.Serbina, Mol. Cryst. Liq. Cryst., 546, 202 (2011). http://dx.doi.org/10.1080/15421406.2011.571161

22. I.Gvozdovskyy, O.Yaroshchuk, M.Serbina, R.Yamaguchi, Opt. Express, 20, 3499 (2012). http://dx.doi.org/10.1364/OE.20.003499

23. A.N.Samoilov, S.S.Minenko, A.P.Fedoryako et al., Functional Materials, 21, No.2 (2014) [in press]. http://dx.doi.org/10.15407/fm21.02.190

24. I.P.Ilchishin, L.M.Lysetskiy, T.V.Mykytiuk, M.I.Serbina, Ukr. Zh. Fiz., 56, 333 (2011).

25. L.N.Lisetski, V.D.Panikarskaya, N.A.Kasian et al., Proc. SPIE, 6023, 6023OF (2005).

26. D.Aronzon, E.P.Levy, P.J.Collings et al., Liq. Cryst., 34, 707 (2007). http://dx.doi.org/10.1080/02678290701267480

27. P.Kalakonda, R.Basu, R.Nemitz et al., J. Chem. Phys., 140, 104908 (2014). http://dx.doi.org/10.1063/1.4867791

28. L.N.Lisetski, A.M.Chepikov, S.S.Minenko et al., Functional Materials, 18, 143 (2011).

29. G.S.Chilaya, L.N.Lisetski, Mol. Cryst. Liq. Cryst., 140, 243 (1986). http://dx.doi.org/10.1080/00268948608080157

30. L.N.Lisetski, S.S.Minenko, A.V.Zhukov et al., Mol. Cryst. Liq. Cryst., 510, 43 (2009).

Current number: