Funct. Mater. 2014; 21 (4): 427-436.

http://dx.doi.org/10.15407/fm21.04.427

Biomineralization and synthesis of biogenic magnetic nanoparticles and magnetosensitive inclusions in microorganisms and fungi

O.Yu.Gorobets, S.V.Gorobets, L.V.Sorokina

National Technical University of Ukraine "Kyiv Polytechnical Institute", 37 Peremohy Ave., 03156 Kyiv, Ukraine

Abstract: 

In this study the identification of proteins which are homologous to Mam proteins of magnetotactic bacteria (MTB) Magnetospirillum gryphiswaldense MSR-1 was performed. Using the bioinformatics methods it was revealed the role of these proteins in synthesis of extracellular and intracellular, crystalline and amorphous magnetosensitive structures (MsS) in magnetotactic microorganisms (MO) of different taxonomic groups, including fungi. The analysis of the results of alignments of Mam-proteins of MTB and the proteins of non-magnetotactic MO synthesizing MsS allowed to classify the investigated MO to 4 groups in which MO differ in their properties and localization of synthesized MsS (extracellular amorphous, extracellular crystalline, intracellular amorphous and intracellular crystalline MsS) that correlates with the presence of the certain Mam homologues in proteome. The obtained results could be useful for identification of the MO potentially producing MsS with the certain properties for different application in medicine, biometallurgy, nanoelectronics.

References: 

1. D.Bazylinski, R.Frankel, Rev. Mineral Geochem., 54, 217 (2003). http://dx.doi.org/10.2113/0540217

2. H.Nudelman, R.Zarivach, Front. Microbiol., 5, 1 (2014). http://dx.doi.org/10.3389/fmicb.2014.00009

3. A.Arakaki, H.Nakazawa, J. R. Soc. Interface, 5, 977 (2008). http://dx.doi.org/10.1098/rsif.2008.0170

4. D.Schuler, R.B.Frankel, Appl. Microbiol. Biotechnol., 52, 464 (1999). http://dx.doi.org/10.1007/s002530051547

5. D.Schuler, Int. Microbiol., 5, 209 (2002). http://dx.doi.org/10.1007/s10123-002-0086-8

6. D.Faivre, D.Schuler, Chem. Rev., 108, 4875 (2008). http://dx.doi.org/10.1021/cr078258w

7. A.Lohße, S.Ullrich, E.Katzmann et al., PLoS One, 6, 255 (2011).

8. D.Murat, A.Quinlan, H.Vali et al., PNAS, 107, 5593 (2010). http://dx.doi.org/10.1073/pnas.0914439107

9. M.Vainshtein, N.Suzina, E.Kudryashova et al., Biology Cell, 94, 29 (2002). http://dx.doi.org/10.1016/S0248-4900(02)01179-6

10. M.B.Vainshtein, N.E.Suzina, V.V.Sorokin, System. Appl. Microbiol., 20, 182 (1997). http://dx.doi.org/10.1016/S0723-2020(97)80064-1

11. O.Yu.Gorobets, S.V.Gorobets, Yu.I.Gorobets, Res. Bull. NTUU "KPI", 3, 28 (2013).

12. J.L.Kirschvink, A.Kobayashi-Kirschvink, J.C.Diaz-Ricci et al., Bioelectromagnetics Supplement, 1, 101 (1992). http://dx.doi.org/10.1002/bem.2250130710

13. A.Bharde, D.Rautaray, V.Bansal et al., Small, 2, 135 (2006). http://dx.doi.org/10.1002/smll.200500180

14. W.Li, F.Pio, K.Pawlowski et al., Bioinformatics, 16, 1105 (2000). http://dx.doi.org/10.1093/bioinformatics/16.12.1105

15. R.James, F.G.Ferris, Chem. Geol., 212, 301 (2004). http://dx.doi.org/10.1016/j.chemgeo.2004.08.020

16. M.Benz, A.Brune, B.Schink, Arch. Microbiol., 169, 159 (1998). http://dx.doi.org/10.1007/s002030050555

17. S.Zhang, L.Yan, H.Li et al., Afr. J. Microbiology Res., 6, 6142 (2012).

18. B.J.Baker, J.F.Banfield, FEMS Microbiol. Ecol., 44, 139 (2003). http://dx.doi.org/10.1016/S0168-6496(03)00028-X

19. A.Kappler, D.K.Newman, Geochim. Cosmochim. Acta, 68, 1217 (2004). http://dx.doi.org/10.1016/j.gca.2003.09.006

20. J.Kim, H.Dong, Clays and Clay Minerals, 59, 176 (2011). http://dx.doi.org/10.1346/CCMN.2011.0590206

21. H.Vali, B.Weiss, Y.Li et al., PNAS, 101, 16124 (2004). http://dx.doi.org/10.1073/pnas.0404040101

22. S.K.Chaudhuri, J.G.Lack, J.D.Coates, Appl. Environ. Microbiol., 67, 2844 (2001). http://dx.doi.org/10.1128/AEM.67.6.2844-2848.2001

23. Y.Jiao, A.Kappler, L.R.Croal et al., Appl. Environ. Microbiol., 71, 4487 (2005). http://dx.doi.org/10.1128/AEM.71.8.4487-4496.2005

24. D.Schuler, FEMS Microbiol. Rev., 32, 654 (2008). http://dx.doi.org/10.1111/j.1574-6976.2008.00116.x

25. S.Silver, G.Ji, Environ. Health Perspect., 102, 107 (1994). http://dx.doi.org/10.1289/ehp.94102s3107

26. D.Fortin, F.G.Ferris, S.D.Scott, Am. Mineral., 81, 1399 (1998). http://dx.doi.org/10.2138/am-1998-11-1229

27. N.V.Verkhovceva, I.N.Glebova, A.V.Romanuk, J. Appl. Phys., 75, 71 (1994). http://dx.doi.org/10.1063/1.356665

28. K.W.Mandernack, D.A.Bazylinski, W.C.Shanks, Science, 285, 285, 1892 (1999).

29. http://www.scientificamerican.com/-article.cfm? id=orig.

30. M.Tanaka, E.Mazuyama, A.Arakaki et al., J. Biol. Chem., 286, 6386 (2011). http://dx.doi.org/10.1074/jbc.M110.183434

31. A.Scheffel, A.Gardes, K.Grunberg et al., J. Bacteriol., 190, 1377 (2008). http://dx.doi.org/10.1128/JB.01371-07

32. A.Komeili, H.Vali, T.J.Beveridge et al., PNAS, 101, 3839 (2004). http://dx.doi.org/10.1073/pnas.0400391101

33. S.Schubbe, T.J.Williams, G.Xie, Appl. Environ. Microbiol., 75, 4835 (2009). http://dx.doi.org/10.1128/AEM.02874-08

34. B.Z.Harris, W.A.Lim, J. Cell Science, 114, 3219 (2011).

35. W.Yang, R.Li, T.Peng et al., Res. Microbiol., 161, 701 (2010). http://dx.doi.org/10.1016/j.resmic.2010.07.002

36. http://blast.ncbi.nlm.nih.gov.

37. D.Schuler, Magnetoreception and Magnetosomes in Bacteria, Springer, Berlin (2006).

38. E.M.Mauriello, F.Mouhamar, B.Nan et al., EMBO J., 29, 315 (2009). http://dx.doi.org/10.1038/emboj.2009.356

39. S.V.Gorobets, O.Yu.Gorobets, Functional Materials, 19, 18 (2012).

40. P.P.Grassi-Schultheiss, F.Heller, J.Dobson, BioMetals, 10, 351 (1997). http://dx.doi.org/10.1023/A:1018340920329

41. D.Hautot, Q.A.Pankhurst, N.Khan et al., Proc. Biol. Sci., 70, 62 (2003). http://dx.doi.org/10.1098/rsbl.2003.0012

42. D.Hautot, Q.A.Pankhurst, Ch.M.Morris et al., Biochem. Biophys. Acta, 1772, 21 (2007). http://dx.doi.org/10.1016/j.bbadis.2006.09.011

43. A.Kobayashi, N.Yamamoto, J.Kirschvink, J. Japan Soc. Powder and Powder Metallurgy, 44, 94 (1997).

44. S.V.Gorobets, O.Yu.Gorobets, Yu.M.Chyzh et al., Biophysics, 58, 379 (2013). http://dx.doi.org/10.1134/S000635091303007X

45. M.Patzak, P.Dostalek, R.Fogarty et al., Biotechnol. Techn., 11, 483 (1997). http://dx.doi.org/10.1023/A:1018453814472

46. T.Matsunaga, T.Suzuki, M.Tanaka et al., Trends Biotechnol., 25, 182 (2007). http://dx.doi.org/10.1016/j.tibtech.2007.02.002

47. O.Yu.Gorobets, S.V.Gorobets, Yu.I.Gorobets, in: Dekker Encyclopedia of Nanoscience and Nanotechnology, 3rd Edition. CRC Press, Florida (2014).

Current number: