Funct. Mater. 2014; 21 (4): 437-447.

http://dx.doi.org/10.15407/fm21.04.437

Effectively unpaired electrons in bipartite lattices within the generalized tight-binding approximation: application to graphene nanoflakes

A.V.Luzanov

STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

A semiempirical technique is proposed for bipartite structures (lattice-like systems with two interpenetrating sublattices). For such systems, the corresponding one-electron tight-binding model can be easily modified to include electron correlation effects, although in a rough manner. It allows one to describe the so-called effectively unpaired electrons (EUE) in giant many-electron systems by using even uncomplicated hardware. The average EUE occupancy is interpreted as a counterpart of the order parameter reflecting a hidden antiferromagnetic structure of the strongly correlated system. We illustrate the developed method by analyzing EUE for several model problems (nanoflakes and nanoribbons) mimicking the graphene-based materials.

References: 

1. C.A.Coulson, G.S.Rushbrooke, Proc. Cambridge Phil. Soc., 36, 139 (1940). http://dx.doi.org/10.1017/S0305004100017102

2. A.Brickstock, J.A.Pople, Trans. Farad. Soc., 59, 901 (1954). http://dx.doi.org/10.1039/tf9545000901

3. P.Kasteleyn, Graph Theory and Theoretical Physics, Academic Press, London (1967).

4. A.D.McLachlan, Mol. Phys., 4, 49 (1961). http://dx.doi.org/10.1080/00268976100100061

5. E.H.Lieb, D.C.Mattis, J. Math. Phys., 3, 749 (1962); Z.H.Lieb, Phys. Rev. Lett., 62, 1201 (1989). http://dx.doi.org/10.1103/PhysRevLett.62.1201

6. F.Harary, Graph Theory, Addison-Wesley, Reading, Mass. (1972);

D.M.Cvetkovic, M.Doob, H.Sachs, Spectra of Graphs, Theory and Application, Academic Press, New York (1980).

7. Computational Methods for Large Systems: Electronic Structure Approaches for Biotechnology and Nanotechnology, ed. by J.R.Reimers, Wiley, Oxford (2011).

8. W.Matthew, C.Foulkes, R.Haydock, Phys. Rev. B, 39, 12520 (1989). http://dx.doi.org/10.1103/PhysRevB.39.12520

9. T.Yamamoto, T.Noguchi, K.Watanabe, Phys. Rev. B, 74, 121409 (2006). http://dx.doi.org/10.1103/PhysRevB.74.121409

10. S.Reich, J.Maultzsch, C.Thomsen, Phys. Rev. B, 66, 035412 (2002); T.B.Boykin, J. Comput. Electr., 8, 142 (2009); T.B.Boykin, M.Luisier, G.Klimeck et al., J. Appl. Phys., 109, 104304 (2011). http://dx.doi.org/10.1063/1.3582136

11. M.Damnjanovic, I.Milosevic, Line Groups in Physics: Theory and Applications to Nanotubes and Polymers, Springer, Heidelberg (2011).

12. V.V.Ivanov, I.P.Kisil, A.V.Luzanov, J. Struct. Chem., 37, 537 (1996). http://dx.doi.org/10.1007/BF02437165

13. K.Takatsuka, T.Fueno, K.Yamaguchi, Theor. Chim. Acta, 48, 175 (1978); V.N.Staroverov, E.R.Davidson, Chem. Phys. Lett., 330, 161 (2000); R.C.Bochicchio, L.Lain, A.Torre, Chem. Phys. Lett., 374, 567 (2003). http://dx.doi.org/10.1016/S0009-2614(03)00751-6

14. M.Head-Gordon, Chem. Phys. Lett., 380, 488 (2003). http://dx.doi.org/10.1016/j.cplett.2003.09.036

15. A.V.Luzanov, O.A.Zhikol, Int. J. Quant. Chem., 104, 167 (2005); A.V.Luzanov, O.V.Prezhdo, J. Chem. Phys., 124, 224109 (2006). http://dx.doi.org/10.1063/1.2204608

16. D.Stuck, T.A.Baker, P.Zimmerman et al., J. Chem. Phys., 135, 194306 (2011); K.Yoneda, M.Nakano, K.Fukuda et al., J. Phys. Chem. Lett., 3, 3338 (2012); W.Mizukami, Y.Kurashige, T.Yanai, J. Chem. Theor. Comp., 9, 401 (2012); A.V.Luzanov, Int. J. Quant. Chem., 113, 2489 (2013); Z.-h.Cui, H.Lischka, H.Z.Beneberuet et al., J. Am. Chem. Soc., 136, 12958 (2014). http://dx.doi.org/10.1021/ja505624y

17. F.Plasser, H.Pasalic, M.H.Gerzabek et al., Angew. Chem. Int. Ed., 52, 2581 (2013). http://dx.doi.org/10.1002/anie.201207671

18. A.V.Luzanov, Zh. Strukt. Khim., 55, 845 (2014).

19. D.Casanova, J. Comput. Chem., 35, 944 (2014). http://dx.doi.org/10.1002/jcc.23580

20. A.T.Amos, G.G.Hall, Proc. Roy. Soc. A, 263, 483 (1961). http://dx.doi.org/10.1098/rspa.1961.0175

21. A.Szabo, N.S.Ostlund, Modern Quantum Chemistry, Dover, New York (1996).

22. P.M.Kozlowski, P.Pulay, Theor. Chem. Acc., 100, 12 (1998). http://dx.doi.org/10.1007/s002140050361

23. K.Ohta, J. Mol. Struct. (Theochem), 587, 33 (2002). http://dx.doi.org/10.1016/S0166-1280(02)00091-X

24. M.M.Mestechkin, Theor. Experim. Chem., 2, 327 (1966); http://dx.doi.org/10.1007/BF00523833

A.V.Luzanov, M.M.Mestechkin, Y.B.Vysotskii, Zh. Strukt. Khim., 12, 289 (1971).

25. H.Fukutome, Int. J. Quantum Chem., 20, 955 (1981). http://dx.doi.org/10.1002/qua.560200502

26. G.Kondayya, A.Shukla, Computer Phys. Comm., 183, 677 (2012). http://dx.doi.org/10.1016/j.cpc.2011.11.006

27. G.G.Hall, Proc. Roy. Soc. A, 229, 251 (1955). http://dx.doi.org/10.1098/rspa.1955.0085

28. P.A.M.Dirac, Proc. Cambr. Phil. Soc., 30, 150, 1934; A.S.Davydov, Quantum Mechanics, Pergamon Press, Oxford (1965) [see Eqs. (61.12) and (61.29)].

29. M.M.Mestechkin, Density Matrix Method in the Theory of Molecules, Naukova Dumka, Kiev (1977) [in Russian].

30. N.J.Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, PA (2008). http://dx.doi.org/10.1137/1.9780898717778

31. M.M.Mestechkin, Theor. Experim. Chem., 1, 388 (1965). http://dx.doi.org/10.1007/BF00525380

32. A.A.Ovchinnikov, I.I.Ukrainskii, G.F.Kvenzel', Sov. Phys. Uspekhi, 15, 575 (1973). http://dx.doi.org/10.1070/PU1973v015n05ABEH005011

33. J.C.W.Chien, Polyacetylene: Chemistry, Physics and Materials Science, Academic Press, Orlando (1984).

34. W.Langer, M.Plischke, D.Mattis, Phys. Rev. Lett., 23, 23, 1448 (1969); W.Langer, D.Mattis, Phys. Lett. A, 36, 139 (1971); N.Tyutyulkov, J. Quantum Chem., 9, 683 (1975). http://dx.doi.org/10.1002/qua.560090410

35. J.G.Pedersen, T.G.Pedersen, Phys. Rev. B, 84, 115424 (2011). http://dx.doi.org/10.1103/PhysRevB.84.115424

36. D.-E.Jiang, X.-Q.Chen, W.Luo, W.A.Shelton, Chem. Phys. Lett., 483, 120 (2009). http://dx.doi.org/10.1016/j.cplett.2009.10.061

37. J.E.Lennard-Jones., Proc. Roy. Soc. A, 158, 280 (1937). http://dx.doi.org/10.1098/rspa.1937.0020

38. C.A.Coulson, Proc. Roy. Soc. A, 60, 257 (1948). http://dx.doi.org/10.1088/0959-5309/60/3/305

39. A.V.Luzanov, J. Struct Chem., 43, 711 (2002). http://dx.doi.org/10.1023/A:1022884018770

40. J.Delhalle, J.M.Andre, S.Delhalle et al., J. Chem. Phys., 60, 595 (1974); J.Delhalle, S.Delhalle, Int. J. Quantum Chem., 11, 349 (1977); O.V.Yazyev, K.N.Kudin, G.E.Scuseria, Phys. Rev. B, 65, 205117 (2002). http://dx.doi.org/10.1103/PhysRevB.65.205117

41. Graphene Chemistry: Theoretical Perspectives, ed. by D.E.Jiang & Z.Chen, Wiley, Puerto Rico (2013).

42. I.A.Misurkin, A.A.Ovchinnikov, Mol. Phys., 27, 237 (1974); I.A.Misurkin, A.A.Ovchinnikov, Russ. Chem. Rev., 46, 96 (1977). http://dx.doi.org/10.1070/RC1977v046n10ABEH002185

43. A.M.S.Macedo, M.C.Dos Santos, M.D.Coutinho-Filho, C.A.Macedo, Phys. Rev. Lett., 74, 1851 (1995). http://dx.doi.org/10.1103/PhysRevLett.74.1851

44. D.E.Jiang, B.G.Sumpter, S.J.Dai, Chem. Phys., 126, 134701 (2007); M.Das, J. Chem. Phys., 140, 124317 (2014). http://dx.doi.org/10.1063/1.4869582

45. S.V.Vonsovskii, M.S.Svirskii, JETP, 30, 140 (1970);

S.V.Vonsovsky, Magnetism, Vol. 2, Wiley, New York (1974).

46. A.V.Luzanov, O.V.Prezhdo, J. Chem. Phys., 135, 094107 (2011). http://dx.doi.org/10.1063/1.3629780

47. A.K.Geim, K.S.Novoselov, Nature Mater., 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849

48. Introduction to Graphene-Based Nanomaterials from Electronic Structure to Quantum Transport, ed. by L.E.F. Foa Torres, S.Roche, J.-C.Charlie, Cambridge University Press (2014).

49. E.L.Wolf, Graphene: a New Paradigm in Condensed Matter and Device Physics, Oxford, Oxford University Press (2014).

50. X.Zhang, J.Xin, F.Ding, Nanoscale, 5, 2556 (2013). http://dx.doi.org/10.1039/c3nr34009k

51. Z.Luo, S.Kim, N.Kawamoto et al., ACS Nano, 5, 9154 (2011). http://dx.doi.org/10.1021/nn203381k

52. A.S.Barnard, I.K.Snook, Modell. Simul. Mater. Sci. Eng., 19, 054001 (2011). http://dx.doi.org/10.1088/0965-0393/19/5/054001

53. J.Fernandez-Rossier, J.J.Palacios, Phys. Rev. Lett., 99,177204 (2007); http://dx.doi.org/10.1103/PhysRevLett.99.177204

V.Barone, O.Hod, G.E.Scuseria, Nano Lett., 6, 2748 (2006); http://dx.doi.org/10.1021/nl0617033

X.Jia, J.Campos-Delgado, M.Terrones et al., Nanoscale, 3, 86 (2011); http://dx.doi.org/10.1039/C0NR00600A

C.Cocchi, D.Prezzi, A.Ruini et al., J. Phys. Chem. C, 116, 17328 (2012); http://dx.doi.org/10.1021/jp300657k

O.S.Karpenko, V.V.Lobanov, N.T.Kartel, Chem. Phys. Technol. Surf., 4, 123 (2013).

54. F.Ouyang, Z.Yang, J.Xiao et al., J. Phys. Chem. C, 114, 15578 (2010); M.R.Philpott, Y.Kawazoe, J. Chem. Phys., 134, 124706 (2011). http://dx.doi.org/10.1063/1.3521393

55. A.Cresti, N.Nemec, B.Biel et al., Nano Research, 1, 361 (2008). http://dx.doi.org/10.1007/s12274-008-8043-2

56. L.R.Radovic, B.Bockrath, J. Am. Chem. Soc., 127, 5917 (2005); L.R.Radovic, A.F.Silva-Villalobos, A.B.Silva-Tapia, F.Vallejos-Burgos, Carbon, 49, 3471 (2011). http://dx.doi.org/10.1016/j.carbon.2011.04.046

57. A.V.Luzanov, Zh. Strukt. Khim., 54, 277 (2013).

58. F.London, J. Phys. Rad., 8, 397 (1937). http://dx.doi.org/10.1051/jphysrad:01937008010039700

59. J.W.Emsley, J.Feeney, L.H.Sutcliffe, High-Resolution NMR Spectroscopy, Pergamon, London (1965).

60. A.Ceulemans, L.F.Chibotaru, P.W.Fowler, Phys. Rev. Lett., 80, 1861 (1998). http://dx.doi.org/10.1103/PhysRevLett.80.1861

61. R.Peierls, Z. Phys., 80, 763 (1933). http://dx.doi.org/10.1007/BF01342591

Current number: