Funct. Mater. 2014; 21 (4): 457-462.

Methods of constructing basis in solving inverse problems

A.V.Mozgovoy[1], V.S.Abramchuk[1], I.V.Abramchuk[2]

[1] M.Kotsyubynsky Vinnitsa State Pedagogical University, 32 Ostrozsky Str., 21100 Vinnitsa, Ukraine
[2] Vinnitsa National Technical University, 47 Khmelnitsky highway Ave., 21103 Vinnitsa, Ukraine


The paper suggests theoretical bases for building the complete systems of the Taylor-type basic elements with dense range of derivatives of positive, negative and fractional orders. This enables to explore the qualitative behavior of the solutions to differential and integral equations (direct and inverse problems), to process the experimentaldata, to identify the systems, to specify mathematical models of the objects and processes, to optimize the designing projects with specified characteristics, to prognosticate natural phenomena.


1. A.M.Denisov, Introduction to the Theory of Inverse Problems, Moscow State University, Moscow (1994) [in Russian].

2. V.G.Romanov, Inverse Problems of Mathematical Physics, Nauka, Moscow (1984) [in Russian].

3. A.O.Vatulyan, Inverse Problems in Solid Mechanics, Fizmatlit, Moscow (2007) [in Russian].

4. R.Gilmore, Catastrophe Theory for Scientists and Engineers, John Wiley & Sone, New York (1981).

5. A.N.Tikhonov, A.V.Goncharsky, V.V.Stepanov, Numerical Methods for Solving Ill-posed Problems, Nauka, Moscow (1990) [in Russian].

6. V.V.Vasiliev, L.A.Simak, Fractional Calculus and Approximation Methods for Modeling Dynamic Systems. Scientific Publication, Ukraine National Academy of Sciences, Kiev (2008) [in Russian].

7. V.S.Abramchuk, I.V.Abramchuk, in: Problems of Computer Science and Computer Engineering (Pictet 2014); in: Proc. of the III-th Intern. Scie. Conf., Chernivtsi, Ukraine (2014), p.52.

8. A.V.Mozgovoy, V.S.Abramchuk, I.V.Abramchuk, Functional Materials, 11, 410 (2004).

9. V.S.Abramchuk, I.V.Abramchuk, Mathematical and Computer Modeling. Series: Physics and Mathematics, , 7 (2012).

10. N.Akhiezer, Lectures on the Theory of Approximations, Nauka, Moscow (1965) [in Russian].

11. A.L.Garkavi, in: Results of Science. Mathematical Analysis, VINITI, Moscow (1969), p.75.

12. V.I.Berdyshev, Yu.N.Subottin, Numerical Methods for Approximating Functions, Middle Ural Book Publishers, Sverdlovsk (1979) [in Russian].

13. F.Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlad (1977).

14. B.I.West, M.Bologna, P.Grigolini, Physics of Fractal Operators, Springer-Verlad (2003).

15. D.Mase, Theory and Problems of Continuum Mechanics, Mograw-Hill Book Company, New York (1970).

16. V.S.Abramchuk, I.V.Abramchuk, A.V.Mozgovoy, News Tula State University, Science, 3, 103 (2013).

Current number: