Funct. Mater. 2014; 21 (4): 467-471.

http://dx.doi.org/10.15407/fm21.04.467

Morphology of lead sulfide crystalline particles in size-limited state

O.S.Bezkrovnyi, Yu.V.Yermolayeva, O.M.Vovk, M.V.Dobrotvorskaya, M.A.Chayka, A.V.Tolmachev

Institute for Single Crystals, STS "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

Monocrystalline PbS particles of cubic structure ranging in size from 3 to 500 nm, were obtained. Influence of growth conditions on the final particles size and dispersion of lead sulfide nanocrystals, as well as effects of nanocrystals size on their shape have been studied. It was found that increasing of monocrystalline particles size more than 12 nm leads to transition of shape from spherical to cubic, that indicate predominance of surface energy influence on equilibrium geometry of nanocrystals.

References: 

1. J.M.Luther, M.Law, Q.Song et al., ACS., 2, 271 (2008).

2. J.M.Luther, J.Gao, M.T.Lloyd et al., Adv. Mater., 22, 3704 (2010). http://dx.doi.org/10.1002/adma.201001148

3. J.D.Klem, H.Shukla, S.Hinds et al., Appl. Phys. Lett., 92, 212105 (2008). http://dx.doi.org/10.1063/1.2917800

4. G.Konstantatos, E.H.Sargent, Appl. Phys. Lett., 91, 173505 (2007). http://dx.doi.org/10.1063/1.2800805

5. S.Miri, A.Rostami, M.Dolatyari et al., E. Phys. St. Sol. A., 210, 420 (2013). http://dx.doi.org/10.1002/pssa.201228733

6. G.Konstantatos, C.Huang, L.Levina et al., Adv. Funct. Mater., 15, 1865 (2005). http://dx.doi.org/10.1002/adfm.200500379

7. X.S.Zhao, E.H.Sargent, E.Kumacheva, Range Adv. Mater., 16, 926 (2004). http://dx.doi.org/10.1002/adma.200306458

8. V.I.Roldugin, Uspehi Himii, 73, 123 (2004).

9. Zhengwei Mao, Haolan Xu, Dayang Wang, Adv. Funct. Mater., 20, 1053 (2010). http://dx.doi.org/10.1002/adfm.200902076

10. R.Vacassy, S.M.Scholz, J.Dutta et al., J. Am. Ceram. Soc., 81, 2699 (1998). http://dx.doi.org/10.1111/j.1151-2916.1998.tb02679.x

11. B.Bodo, N.Talukdar, P.K.Kalita, IJERA, 2, 1656 (2012).

12. W.Chao-Ming et al., Chin. J. Struct. Chem., 27, 445 (2008).

13. S.S.Batsanov, Strukturnaya Himiya. Faktyi i Zavisimosti, Dialog-MGU, Moscow (2000) [in Russian].

14. Z.Peng, Y.Jiang, Y.Song, C.Wang, H.Zhang, Chem. Mater., 20, 3153 (2008). http://dx.doi.org/10.1021/cm703707v

15. M.B Muradov, G.M.Eyvazova, Rashid Turan et al., Nanotehnika, 3, 60 (2008).

16. R.Bazzi et al., J. Luminescence., 102, 445 (2003). http://dx.doi.org/10.1016/S0022-2313(02)00588-4

17. K.S.Babu, T.R.Kumar, P.Haridossa, C.Vijaya, Talanta, 66, 160 (2005). http://dx.doi.org/10.1016/j.talanta.2004.11.002

18. L.Cademartiri, E.Montanari, G.Calestani et al., ACS, 128, 10337 (2006). http://dx.doi.org/10.1021/ja063166u

19. I.Moreels, K.Lambert, D.Smeets et al., ACS NANO, 3, 3023 (2009). http://dx.doi.org/10.1021/nn900863a

20. L.Cademartiri, G.von Freymann, A.C.Arsenault et al., Small, 1, 1 (2005). http://dx.doi.org/10.1002/smll.200500206

21. N.Zhao, T.P.Osedach, Liang-Yi Chang et al., ACS NANO, 1 (2010).

Current number: