Funct. Mater. 2014; 21 (4): 487-491.

http://dx.doi.org/10.15407/fm21.04.487

Effect of microwave sintering temperature on structure and properties of bioceramics based on biogenic hydroxyapatite

H.Tovstonoh[1,2], O.Sych[2], V.Skorokhod[2]

[1] National Technical University of Ukraine "Kyiv Polytechnical Institute", 37 Peremogy Ave., 03056 Kyiv, Ukraine
[2] I.Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky Str., 03680 Kyiv, Ukraine

Abstract: 

The present work demonstrates the possibility to produce medicine-aimed ceramics on the basis of biogenic hydroxyapatite with structural-mechanical properties required for replacement of the bone tissue defects using techniques of microwave sintering at 800-1100°C. It has been established that porosity of the bioceramics obtained in the temperature range of 800-1000°C (5 min exposure to the maximal temperature) equals about 40 %, whereas at 1100°C it decreases down to 37 %. Compression strength increases with increasing the temperature from 25 to 38 MPa.

References: 

1. M.Aminzare, A.Eskandari, M.H.Baroonian et al., Ceram. Int., 39, 2197 (2013). http://dx.doi.org/10.1016/j.ceramint.2012.09.023

2. E.Champion, Acta Biomater., 9, 5855 (2013). http://dx.doi.org/10.1016/j.actbio.2012.11.029

3. C.Guzman Vazquez, C.Pina Barba, N.Mungua, Revista Mexicana de f'isica, 51, 284 (2005).

4. A.Raksujarit, K.Pengpat, G.Rujijanagul, T.Tunkasiri, Mater. Des., 31, 1658 (2010). http://dx.doi.org/10.1016/j.matdes.2009.06.050

5. Y.Gao, W.-L.Cao, X.-Y.Wang et al., J. Mater. Sci.: Mater. Med., 17, 815 (2006). http://dx.doi.org/10.1007/s10856-006-9840-3

6. C.Y.Ooi, M.Hamdi, S.Ramesh, Ceram. Int., 33, 1171 (2007). http://dx.doi.org/10.1016/j.ceramint.2006.04.001

7. A.Ruksudjarit, K.Pengpat, G.Rujijanagul, T.Tunkasiri, Curr. Appl. Phys., 8, 270 (2008). http://dx.doi.org/10.1016/j.cap.2007.10.076

8. A.S.Fomin, S.M.Barinov, V.M.Ievlev et al., Dokl. Chem., 418, 22 (2008). http://dx.doi.org/10.1134/S0012500808010084

9. Y.Zhang, K.Zuo, Y.-P.Zeng, Ceram. Int., 35, 2151 (2009). http://dx.doi.org/10.1016/j.ceramint.2008.11.022

10. C.Drouet, F.Bosc, M.Banu et al., Powder. Technol., 190, 118 (2009). http://dx.doi.org/10.1016/j.powtec.2008.04.041

11. O.Sych, N.Pinchuk, Proc. Appl. Ceram., 1, 1 (2007). http://dx.doi.org/10.2298/PAC0702001S

12. J.H.G.Rocha, A.F.Lemos, S.Agathopoulos et al., Bone, 37, 850 (2005). http://dx.doi.org/10.1016/j.bone.2005.06.018

13. F.N.Oktar, Ceram. Int., 33, 1309 (2007). http://dx.doi.org/10.1016/j.ceramint.2006.05.022

14. S.A.Goldstein, J. Biomech., 20, 1055 (1987). http://dx.doi.org/10.1016/0021-9290(87)90023-6

Current number: