Funct. Mater. 2014; 21 (4): 394-398.

http://dx.doi.org/10.15407/fm21.04.394

Aging-effect in optimal doped Yba2Cu3O7-δ single crystals

Z.F.Nazyrov, A.V.Popova, R.V.Vovk

V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine

Abstract: 

We investigate the conducting properties of the optimally oxygen doped YBa2Cu3O7-δ single crystals in the basal ab-plane before and after a long time exposure (aging) at air atmosphere. Prolonged exposure leads to increase of amount of the effective scattering centers of the normal carriers. The excess conductivity in a wide temperature range has exponential temperature dependence and near the critical temperature (Tc) is well described within the Aslamazov-Larkin theoretical model. Here we show that the prolonged exposure leads to a great extention of temperature range of the pseudogap state implementation and to narrowing the linear section of the dependence ρab(T).

References: 

1. J.D.Jorgencen, P.Shiyou, P.Lightfoot et al., Physica C, 167, 571 (1990). http://dx.doi.org/10.1016/0921-4534(90)90676-6

2. M.A.Obolenskii, A.V.Bondarenko, R.V.Vovk, A.A.Prodan, Low Temp. Phys., 23, 882 (1997). http://dx.doi.org/10.1063/1.593496

3. S.Sadewasser, J.S.Schilling, A.P.Paulicas, B.M.Veal, Phys. Rev. B, 61, 741 (2000). http://dx.doi.org/10.1103/PhysRevB.61.741

4. R.V.Vovk, G.Ya.Khadzhai, Z.F.Nazyrov et al., Physica B, 407, 4470 (2012). http://dx.doi.org/10.1016/j.physb.2012.07.049

5. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., Physica B, 422, 33 (2013). http://dx.doi.org/10.1016/j.physb.2013.04.032

http://dx.doi.org/10.1016/j.physb.2013.04.032. http://dx.doi.org/10.1016/j.physb.2013.04.032

6. B.W.Veal, H.You, A.P.Paulicas et al., Phys. Rev. B, 42, 4770 (1990). http://dx.doi.org/10.1103/PhysRevB.42.4770

7. J.Kircher, M.Cardona, A.Zibold et al., Phys. Rev. B, 48, 9684 (1993). http://dx.doi.org/10.1103/PhysRevB.48.9684

8. Z.Li, H.Wang, N.Yang et al., J. Chin. Ceram. Soc., 18, 555 (1990).

9. K Schlesier et al., J. Phys.:Conf. Ser., 234, 012036 (2010). doi:10.1088/1742-6596/234/1/012036. http://dx.doi.org/10.1088/1742-6596/234/1/012036

10. B.Martinez, F.Sandiumenge, S.Pinol et al., Appl. Phys. Lett., 66, 772 (1995). http://dx.doi.org/10.1063/1.114089

11. Qing-Rong Feng et al., Supercond. Sci. Technol., 6, 715 (1993). doi:10.1088/0953- 2048/6/10/002.

12. R.V.Vovk, M.A.Obolenskii, Z.F.Nazyrov et al., J. Mater Sci.: Mater. Electron., 23, 1255 (2012). http://dx.doi.org/10.1007/s10854-011-0582-8

13. S.Hikami, A.I.Larkin, Modern Phys. Lett., B2, 693 (1988). http://dx.doi.org/10.1142/S0217984988000369

14. R.V.Vovk, G.Ya.Khadzhai, I.L.Goulatis, A.Chroneos, Physica B, 436, 88 (2014). http://dx.doi.org/10.1016/j.physb.2013.11.056

15. J.Ashkenazi, J. Supercond. Nov. Magn., 24, 1281 (2011). http://dx.doi.org/10.1007/s10948-010-0823-8

16. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., J. Mater. Sci.: Mater. Electron., 20, 858 (2009). http://dx.doi.org/10.1007/s10854-008-9806-y

17. P.Schleger et al., Physica C, 176, 261 (1991). http://dx.doi.org/10.1016/0921-4534(91)90722-B

18. M.V.Sadovskii, Phys. Usp., 44, 515 (2001). http://dx.doi.org/10.1070/PU2001v044n05ABEH000902

19. E.Babaev, H.Kleinert, Phys. Rev. B, 59, 12083 (1999). http://dx.doi.org/10.1103/PhysRevB.59.12083

20. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., J. Alloys Compd., 485, 121 (2009). http://dx.doi.org/10.1016/j.jallcom.2009.05.132

21. D.H.S.Smith, R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, New J. Physics, 8, 128 (2006). http://dx.doi.org/10.1088/1367-2630/8/8/128

22. R.V.Vovk, A.A.Zavgorodniy, M.A.Obolenskii et al., Mod. Phys. Lett. B, 24, 2295 (2010). http://dx.doi.org/10.1142/S0217984910024675

23. R.V.Vovk., C.D.H.Williams, A.F.G.Wyatt, Phys. Rev. B, 69, 144524 (2004). http://dx.doi.org/10.1103/PhysRevB.69.144524

24. R.V.Vovk, N.R.Vovk, O.V.Shekhovtsov et al., Supercond. Sci. Technol., 26, 085017 (2013). http://dx.doi.org/10.1088/0953-2048/26/8/085017

25. L.G.Aslamazov, A.I.Larkin, Phys. Lett., 26A, 238 (1968). http://dx.doi.org/10.1016/0375-9601(68)90623-3

Current number: