Funct. Mater. 2014; 21 (4): 414-420.

http://dx.doi.org/10.15407/fm21.04.414

Plastic scintillator enriched Gd-containing nanoparticles

O.V.Svidlo, P.N.Zhmurin, Yu.A.Gurkalenko

Institute for Scintillating Materials, STC "Institute for Single Crystals" National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

Polystyrene compositions containing GdF3 nanoparticles stabilized by ammonium di-hexadecyldithiophosphate and fatty aromatic phosphonic acid (C6H5-(CH2)n-PO(OH)2, n = 1, 2, 3) were obtained. It was shown that the nanoparticles surface modification by fatty aromatic phosphonic acids with high physical-chemical affinity to polystyrene significantly improves the nanoparticles dispersibility in polymer. The plastic scintillators with content of GdF3 nanoparticles to 5 wt. % without significant loss of the light yield were obtained.

References: 

1. N.Z.Galunov, V.P.Seminozhenko, Teorija i Primenenie Radioljuminescencii Organicheskih Kondensirovannyh Sred, Naukova Dumka, Kiev (1997) [in Russian].

2. B.V.Grinev, V.G.Senchishin, Plastmassovye Scintilljatory, Acta, Kharkov (2003) [in Russian].

3. V.I.Aleshyn, A.M.Bakalyarov, A.J.Balish et al., Pribory i Technika Eksper., 4, 68 (1977).

4. US Patent 6,544,422 (2003).

5. I.B.Gzirr, Nucl. Instr. Meth. Phys. Res, 108, 613 (1973). http://dx.doi.org/10.1016/0029-554X(73)90549-1

6. V.I.Bregadze, V.B.Brudanin, D.V.Filossofov et al., in: Proc. of the III Int. Workshop on the Identification of Dark Matter, York, UK (2000), p.626.

7. L.Ovechkina, K.Riley, S.Miller et al., Phys. Procedia, 161, 161 (2009). http://dx.doi.org/10.1016/j.phpro.2009.07.008

8. A.J.Bedrik, Y.S.Velmozhnaya, P.N.Zhmurin et al., Functional Materials, 4, 470 (2011).

9. L.G.Jacobsohn, K.B.Sprinkle, S.A.Roberts et al., J. Nanomaterials, 2011, 1 (2011). http://dx.doi.org/10.1155/2011/523638

10. Y.Wang, Q.Weiping, J.Zhang et al., J. Rare Earths, 1, 40 (2008). http://dx.doi.org/10.1016/S1002-0721(08)60033-2

11. J.W.Stouwdam, F.C.J.M.van Veggel, Langmuir, 20, 11763 (2004). http://dx.doi.org/10.1021/la048379g

12. J.W.Stouwdam, F.C.J.M.van Veggel, NanoLett., 2, 733 (2002). http://dx.doi.org/10.1021/nl025562q

13. J.W.Stouwdam, M.Raudsepp, F.C.J.M.van Veggel, Chem. Mater., 21, 7003 (2005).

14. Z.L.Wang, Z.W.Quan, P.Y.Jia et al., Chem. Mater., 18, 2030 (2006). http://dx.doi.org/10.1021/cm052360x

15. J.W.Stouwdam, G.A.Hebbink, J.Huskens et al., Chem. Mater., 15, 4604 (2003). http://dx.doi.org/10.1021/cm034495d

16. R.Gomes, A.Hassinen, A.Szczygielet al., J. Phys. Chem. Lett., 2, 145 (2011). http://dx.doi.org/10.1021/jz1016729

17. US 4,324,740 (1982).

18. M.I.Kabachyk, T.A.Mastrukova, E.I.Matrosov et al., Zh. Strykt. Chimii, 5, 693 (1965).

19. L.Y.Bellamy,The Infrared Spectra of Complex Molecules, London, New York (1963).

20. I.L.Medintz, H.T.Uyeda, E.R.Goldman et al., Nature Mater., 4, 435 (2005). http://dx.doi.org/10.1038/nmat1390

21. M.Bruchez, M.Moronne, P.Gin et al., Science, 281, 2013 (1998). http://dx.doi.org/10.1126/science.281.5385.2013

22. N.A.Chiviryova, O.N.Lasovskaya, V.P.Antonovich et al., Functional Materials, 3, 555 (2001).

23. K.Nakanishi, Infrared Absorption Spectroscopy, San Francisco, Tokyo (1962).

24. R.M.Silverstein, G.S.Bassler, T.S.Morrill, Spectrometric Identification of Organic Compounds, John Wiley ans Sons, Inc., (1974).

25. E.Mascaro, O.I.Pieroni, B.M.Vuano et al., Molecular Med. Chem., 13, 36 (2007).

26. P.C.Schulz, B.S.Fernfindez-Band, B.Vuano at al., Colloid. Polym. Sci., 274, 741 (1996). http://dx.doi.org/10.1007/BF00654669

27. B.A.Trofimov, N.K.Gusarova, S.F.Malysheva at al., Zh. Obshei Chimii, 75, 9 (2005).

Current number: