Funct. Mater. 2015; 22 (1): 69-78.
3D composite particles
1Institute for Single Crystals, STC ″Institute for Single Crystals″ National Academy of Sciences of Ukraine, 60, Lenin ave. 61001 Kharkiv, Ukraine
2Universite de Toulouse [UPS], CNRS, Institut de Recherche en Astrophysique et Planetologie, 9 avenue du Colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France
The simple model of three-dimensional particle with internal degrees of freedom that interact with each other is proposed. The typical kinematic modes of motion of such particle with a small number of internal degrees of freedom are considered. Analytically investigated are all modes of motion of particle with one internal degree of freedom. We show that appearance of chaotic regimes is typical and found the mechanism of chaotization starting from two internal degrees of freedom. Obtained are the basic rules of motion of such particles and of the redistribution of energy of the internal degrees of freedom.
1. V.V.Yanovsky, A.V.Tur, Yu. N. Maslovsky, Zh. Eksper. Teor. Fiz., 106, 1, 187 (2008).
2. V.V.Yanovsky, A.V.Tur, Yu. N. Maslovsky, Zh. Eksper. Teor. Fiz., 175, 2, 655 (2013).
3. S. V. Slipushenko, A. V. Tur, V. V. Yanovsky, Zh. Eksper. Teor. Fiz., 117, 2, 274 (2013).
4. M.A.Ratner, A.V.Tur, V.V.Yanovsky, Functional Materials, 20, 4, 510-515 (2013). http://dx.doi.org/10.15407/fm20.04.510
5. G.A.Galperin, A.N.Zemlyakov, Mathematical Billiards, Nauka, Moscow, 1990 [in Russian].
6. S. Tabachnikov, Geometry and Billiards, American Mathematical Society, September 28, 2005, 176p.
7. Ya.G.Sinai, Entropy per particle for the dynamical system of hard spheres, Preprint, Harvard University, 1978.
8. B.A.Rozenfeld, Mnogomernye Prostranstva, Nauka, Moscow, 1966 [in Russian].
9. N.I.Chernov, Funct. Anal. Appl., 253, p.204, 1991. http://dx.doi.org/10.1007/BF01085490
10. L.A.Bunimovich, Dispersing, Defocusing and Astigmatism, Math. Education 5, 106, (2001).
11. S.Lansel, M.A.Porter, L.A.Bunimovich, One-particle and few-particle billiards, Chaos 16, 013129 (2006). http://dx.doi.org/10.1063/1.2147740