Funct. Mater. 2015; 22 (1): 93-99.

http://dx.doi.org/10.15407/fm22.01.093

Influence of solution precursors on structure of ZnO films

T.O.Berestok, D.I.Kurbatov, N.M.Opanasyuk, A.S.Opanasyuk

Sumy State University, 2 Rimsky-Korsakov St., 40007 Sumy, Ukraine

Abstract: 

In the work using high resolution scanning electron microscopy and X-ray analysis, we carry out the studying of the correlation between chemical and technological conditions of deposition, the initial solution composition and structural properties of the synthesized samples of zinc oxide. Growth of the layers depends on the initial precursors and it occurs through formation of the ordered array of nanorods and nanoflowers. It is shown that it is possible to choose the optimal conditions to obtain ZnO films with controlled structural properties that can be used as the base layers in microelectronic devices.

Keywords: 
ZnO nanorods, ZnO nanoflowers, chemical bath deposition, morphology, structure, sub-structure
References: 

1. J.Guo, J.Zhang, M.Zhu et al., Sensor. Actuat. B-Chem, 199, 339 (2014). http://dx.doi.org/10.1016/j.snb.2014.04.010

2. R.Scheer, H.-W.Schock, Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices, WILEY-VCH Verlag GmbH & Co. KGaA (2011).

3. M.H.Kumar, N.Yantara, S.Dharani et al., Chem. Commun., 49, 11089 (2013), http://dx.doi.org/10.1039/c3cc46534a

4. R.Triboulet, Prog. Cryst. Growth Ch., 60, 1 (2014). http://dx.doi.org/10.1016/j.pcrysgrow.2013.12.001

5. Y.Kashiwaba, F.Katahira, K.Haga et al., J. Cryst. Growth, 221, 431 (2000). http://dx.doi.org/10.1016/S0022-0248(00)00729-6

6. C.Amutha, A.Dhanalakshmi, B.Lawrence et al., Progr. Nanotechn. Nanomater., 3, 13 (2014).

7. A.D.Pogrebnjak, A.A.Muhammed, E.T.Karash et al., Prz. Elektrotechniczn., 3b, 315 (2013).

8. A.Gahtar, A.Rahal, B.Benhaoua, S.Benramache, Optik Intern. J. Light and Electron Optics, 125, 3674 (2014). http://dx.doi.org/10.1016/j.ijleo.2014.01.078

9. J.Fan, Y.Hao, C.Munuera et al., J. Phys. Chem. C, 117, 16349 (2013). http://dx.doi.org/10.1021/jp405557b

10. J.Fan, Y.Hao, A.Cabot et al., ACS Appl. Mater. & Interfaces, 5, 1902 (2013). http://dx.doi.org/10.1021/am400042s

11. J.D.Fan, C.Fabrega, R.Zamani et al., J. Alloys Compd., 555, 213 (2013). http://dx.doi.org/10.1016/j.jallcom.2012.11.166

12. J.Fan, R.Zamani, C.Fabrega et al., J. Phys. D: Appl. Phys., 45, 415301 (2012). http://dx.doi.org/10.1088/0022-3727/45/41/415301

13. J.Fan, F.Guell, C.Fabrega et al., J. Phys. Chem. C, 116, 19496 (2012). http://dx.doi.org/10.1021/jp302443n

14. S.B.Jambure, S.J.Patil, A.R.Deshpande, C.D.Lokhande, Mater. Res. Bull., 49, 420 (2014). http://dx.doi.org/10.1016/j.materresbull.2013.09.007

15. K.V.Gurav, U.M.Patil, S.M.Pawar et al., J. Alloys Compd., 509, 7723 (2011). http://dx.doi.org/10.1016/j.jallcom.2011.04.094

16. Q.Li, J.Bian, J.Sun et al., Appl. Surf. Sci., 2561, 698 (2010).

17. R.Saravana Kumar, R.Sathyamoorthy, P.Matheswaran et al., J. Alloys Compd., 506, 351 (2010). http://dx.doi.org/10.1016/j.jallcom.2010.06.206

18. H.-C.Cheng, C.-F.Chen, C.-Y.Tsay, J.-P.Leu, J. Alloys Compd., 475, L46 (2009). http://dx.doi.org/10.1016/j.jallcom.2008.08.080

19. T.O.Berestok, D.I.Kurbatov, N.M.Opanasyuk et al., J. Nano-Electron. Phys., 5, 01001(2013).

20. A.S.Opanasyuk, T.O.Berestok, P.M.Fochuk et al., Proc. of SPIE, 8823, 88230Q1 (2013).

21. W.-J.Lee, J.-G.Chang, S.-P.Ju et al., Nanoscale Res. Lett., 6, 352 (2011). http://dx.doi.org/10.1186/1556-276X-6-352

22. T.Mahalingam, V.S.John, L.S.Hsu, J. New Mat. Electrochem. Syst., 10, 9 (2007).

23. Ja.S.Umanskij, Ju.A.Skakov, A.N.Ivanov, L.N.Rastorgujev, Crystallogaphy, X-ray Graph and Electronmicroscopy, Metallurgy, Moscow (1982) [in Russian].

24. Selected Powder Diffraction Data for Education Straining (Search Manual and Data Cards), Published by the International Centre for Diffraction Data, 432 (1997).

25. V.V.Kosyak, D.I.Kurbatov, M.M.Kolesnyk et al., Mater. Chem. Phys., 138, 731 (2013). http://dx.doi.org/10.1016/j.matchemphys.2012.12.049

Current number: