Funct. Mater. 2015; 22 (1): 135-139.

http://dx.doi.org/10.15407/fm22.01.135

Search for 2β processes in 106Cd with 106CdWO4 crystal scintillator

O.G.Polischuk1,2, P.Belli3, R.Bernabei3,4, V.B.Brudanin5, F.Cappella6, V.Caracciolo6, R.Cerulli6, D.M.Chernyak1, F.A.Danevich1, S.D″Angelo3,4, A.Incicchitti2, M.Laubenstein6, V.M.Mokina1, D.V.Poda1,7, V.I.Tretyak1,2, I.A.Tupitsyna8

1Institute for Nuclear Research, MSP 03680 Kyiv, Ukraine
2INFN, sezione di Roma, I-00185 Rome, Italy
3INFN, sezione Roma ″Tor Vergata″, I-00133 Rome, Italy
4Dipartimento di Fisica, Universita di Roma ″Tor Vergata″, I-00133 Rome, Italy
5Joint Institute for Nuclear Research, 141980 Dubna, Russia
6INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi (AQ), Italy 7CNRS/CSNSM, Centre de Sciences Nucleaires et de Sciences de la Matiere, 91405 Orsay, France
8Institute of Scintillation Materials, STC ″Institute for Single Crystals″ National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

An experiment to search for double β (2β) decay of 106Cd with the help of a low-background cadmium tungstate crystal scintillator developed from cadmium enriched in 106Cd to 66 % (106CdWO4, 215 g) is in progress at the STELLA facility of the Gran Sasso underground laboratory (INFN, Italy). The 106CdWO4 scintillator is viewed by low-background photomultiplier through a PbWO4 crystal light-guide produced from deeply purified archaeological lead. The detector operates in coincidence with the four low-background HPGe detectors to search for 2β processes with the emission of gamma quanta. Sensitivity of the experiment after 10678 h of data taking to different channels of 2β decay of 106Cd is on the level of limT1/2 ~ 1019-1021 years. In particular, the limit T1/22νε β + ≥ 1.3·1021 yr at 90 % C.L. reached the region of theoretical predictions.

Keywords: 
crystal scintillator, cadmium tungstate, isotope <sup>106</sup>Cd, double-&beta; decay.
References: 

1. F.T.Avignone III, S.R.Elliott, J.Engel, Rev. Mod. Phys., 80, 481 (2008). http://dx.doi.org/10.1103/RevModPhys.80.481

2. W.Rodejohann, Int. J. Mod. Phys. E, 20, 1833 (2011). http://dx.doi.org/10.1142/S0218301311020186

3. S.R.Elliott, Mod. Phys. Lett. A, 27, 1230009 (2012). http://dx.doi.org/10.1142/S0217732312300091

4. J.D.Vergados, H.Ejiri, F.Simkovic, Rep. Prog. Phys., 75, 106301 (2012). http://dx.doi.org/10.1088/0034-4885/75/10/106301

5. A.Giuliani, A.Poves, Adv. High En. Phys., 2012, 857016 (2012). http://dx.doi.org/10.1155/2012/857016

6. M.Hirsch et al., Z. Phys. A, 347, 151 (1994). http://dx.doi.org/10.1007/BF01292371

7. M.Berglund, M.E.Wieser, Pure Appl. Chem., 83, 397 (2011). http://dx.doi.org/10.1351/PAC-REP-10-06-02

8. M.Wang et al., Chinese Phys. C, 36, 1603 (2012). http://dx.doi.org/10.1088/1674-1137/36/12/003

9. J.Suhonen, Phys. Lett. B, 701, 490 (2011). http://dx.doi.org/10.1016/j.physletb.2011.06.016

10. S.Stoica, H.V.Klapdor-Kleingrothaus, Eur. Phys. J. A, 17, 529 (2003). http://dx.doi.org/10.1140/epja/i2003-10028-0

11. A.Shukla et al., Eur. Phys. J. A, 23, 235 (2005). http://dx.doi.org/10.1140/epja/i2004-10084-x

12. P.Domin et al., Nucl. Phys. A, 753, 337 (2005). http://dx.doi.org/10.1016/j.nuclphysa.2005.03.003

13. P.Belli et al., Nucl. Instr. Meth. Phys. Res. A, 615, 301 (2010). http://dx.doi.org/10.1016/j.nima.2010.01.081

14. P.Belli et al., Phys. Rev. C, 85, 044610 (2012). http://dx.doi.org/10.1103/PhysRevC.85.044610

15. F.A.Danevich et al., Nucl. Instr. Meth. Phys. Res. A, 603, 328 (2009). http://dx.doi.org/10.1016/j.nima.2009.02.018

16. R.S.Boiko et al., Inorgan. Materi., 47, 645 (2011). http://dx.doi.org/10.1134/S0020168511060069

17. V.I.Tretyak et al., EPJ Web Conf., 65, 01004 (2014). http://dx.doi.org/10.1051/epjconf/20136501004

18. W.R.Nelson et al., SLAC-Report-265 (Stanford, 1985).

19. G.J.Feldman, R.D.Cousins, Phys. Rev. D, 57, 3873 (1998). http://dx.doi.org/10.1103/PhysRevD.57.3873

20. A.S.Barabash et al., Nucl. Phys. A, 604, 115 (1996). http://dx.doi.org/10.1016/0375-9474(96)00138-8

Current number: