Funct. Mater. 2015; 22 (1): 14-19.

http://dx.doi.org/10.15407/fm22.01.014

Size effects in thin n-PbTe films

S.I.Men'shikova, E.I.Rogacheva, A.Yu.Sipatov, Ye.N.Zubarev

National Technical University, ″Kharkiv Polytechnic Institute″, 21 Frunze St., 61002 Kharkiv, Ukraine

Abstract: 

The effect of the film thickness d on the Seebeck coefficient S, the Hall coefficient RH, electrical conductivity σ, charge carrier mobility μH and thermoelectric power factor S2σ of thin films (d = 7-235 nm) prepared by thermal evaporation of n-type PbTe polycrystals doped with InTe in vacuum onto (001)KCl substrates was investigated. It was established that at d ~ 20 nm, an inversion of the conductivity type (an) occurs, which is attributed to a change in the thermodynamic equilibrium conditions in films as compared with bulk crystals and\or to partial re-evaporation of In atoms. In the thickness range d < 20 nm, extrema in the d-dependences of the properties are detected at d ~ 13 nm, and at d > 20 nm, the thickness dependences of the properties exhibit an oscillatory behavior with the period Δ d ~ 12 nm. The observed oscillatory character of the thickness dependences of the kinetic coefficients is attributed to the manifestation of quantum size effects. The theoretical S(d) dependence calculated in the approximation of size quantization taking into account d-dependences of the Fermi energy and a number of subbands is in good agreement with the experimental one with regard to the oscillation period.

Keywords: 
lead telluride, indium, thin film, thickness, thermoelectric properties, quantum size effect.
References: 

1. Yu.F.Komnik, Physics of Metal Films, Atomizdat, Moscow (1979) [in Russian].

2. Yu.F.Ogrin, V.N.Lutsky, M.I.Elinson, Pis'ma v Zh. Exper. i Teor. Fiz., 3, 114 (1966).

3. E.I.Rogacheva, O.N.Nashchekina, T.V.Tavrina et al., Physica E, 17, 313 (2003). http://dx.doi.org/10.1016/S1386-9477(02)00820-2

4. E.I.Rogacheva, O.S.Vodorez, O.N. Nashchekina et al., J. Electronic Mater., 39, 2085 (2010). http://dx.doi.org/10.1007/s11664-009-0996-8

5. E.I.Rogacheva, O.N.Nashchekina, S.N.Grigorov et al., Nanotechnology, 14, 53 (2003). http://dx.doi.org/10.1088/0957-4484/14/1/313

6. E.I.Rogacheva, O.N.Nashchekina, Y.O.Vekhov et al., Thin Solid Films, 423, 115 (2002). http://dx.doi.org/10.1016/S0040-6090(02)00968-9

7. E.I.Rogacheva, T.V.Tavrina, O.N.Nashchekina et al., Appl. Phys. Lett., 80, 2690 (2002). http://dx.doi.org/10.1063/1.1469677

8. E.I.Rogacheva, O.N.Nashchekina, S.I.Ol?khovskaya et al., J. Thermoelectricity, 4, 25 (2012).

9. S.I.Olkhovskaya, E.I.Rogacheva, J. Thermoelectricity, 5, 22 (2013).

10. D.M.Rowe, CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, London, New York, Washington (1995).

11. Yu.I.Ravich, B.A.Efimova, I.A.Smirnov. Methods of Research on Semiconductors as Applied to Lead Chalcogenides PbTe, PbSe and PbS, Nauka, Moscow (1968) [in Russian].

12. V.I.Kaidanov, Yu.I.Ravich, Usp. Fiz. Nauk, 145, 51 (1985). http://dx.doi.org/10.3367/UFNr.0145.198501b.0051

13. M.S.Dresselhaus, G.Dresselhaus, X.Sun et al., Conf. Proc. Phys. Solid State, 41, 679 (1999). http://dx.doi.org/10.1134/1.1130849

14. F.K.Schulte, Surface Sci., 55, 427 (1976). http://dx.doi.org/10.1016/0039-6028(76)90250-8

15. B.A.Tavger, B.Ya.Demihovskii, Usp. Fiz. Nauk, 96, 61 (1968). http://dx.doi.org/10.3367/UFNr.0096.196809d.0061

16. M.P.Singh, C.M.Bhandari, Solid State Commun., 133, 29 (2005). http://dx.doi.org/10.1016/j.ssc.2004.09.052

17. J.R.Drabble, H.J.Goldsmid, Thermal Conduction in Semiconductors, Chapter 4, Pergaman Press, London (1961).

18. V.D.Dymnikov, Phys. Solid State, 53, 901 (2011). http://dx.doi.org/10.1134/S106378341105009X

19. A.Ya. Shik, L.G. Bakueva, S.F., Musikhin et al., Physics of Low-Dimensional systems, Nauka, St-Petersburg (2001) [in Russian].

Current number: