Funct. Mater. 2015; 22 (1): 140-143.
Engineering of long length CsI:Tl scintillators for high energy physics
Institute for Scintillation Materials, STC ″Institute for Single Crystals″, National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkov, Ukraine
It is shown that engineering of long length CsI:Tl scintillators for medium and high energy physics projects significantly depends of the primary performance of scintillation single crystal. In particular statistical study on several hundred samples for different project justify significant role of the Tl concentration. Tl concentration gradient along the bar and final finishing (stability of surface roughness for the light collection tuning) in the technology optimization for scintillator production. It is necessary to note, that any of these parameters are not taken into account in the Monte Carlo simulation (Geant 4) that usually use as the start point for the scintillator optimization.
1. P.Schotanus et al., IEEE Trans. Nucl. Scie., 37, 177 (1990). http://dx.doi.org/10.1109/23.106614
2. Y.Ohshima et al., Instr. Meth. Phys. Res. A, 380, 517 (1996). http://dx.doi.org/10.1016/0168-9002(96)00706-1
3. Aubert et al., Nucl. Instr.Meth. Phys. A, 479, 1 (2002). http://dx.doi.org/10.1016/S0168-9002(01)02012-5
4. R.Bougault et al., The Eur. Phys. J. A - Hadrons and Nuclei, 50, 2 (2014).
5. N.Gehrels, P.Michelson, Astroparticle Physics, 11, 277 (1999). http://dx.doi.org/10.1016/S0927-6505(99)00066-3
6. FAIR/NUSTAR/R3B/TDR CALIFA. Technical Report for the Design, Construction and Commissioning of The CALIFA Barrel: The R3B CALorimeter for In Flight detection of - Rays and High Energy Charged Particles, 29 November (2011).
7. M.Janecek, W.W.Moses, Nucl. Scie. IEEE Trans. Nuclear Scie., 57, 964 (2010). http://dx.doi.org/10.1109/TNS.2010.2042731
8. S.Agostinelli, J.Allison, K.Amako et al., Nuclear Instruments and Methods in Physics Research Section A, 506, 250 (2003). http://dx.doi.org/10.1016/S0168-9002(03)01368-8
9. M.E.Globus, B.V.Grinyov, Inorganic Scintillators. New and Conventional Materials, Akta, Kharkov (2000) [in Russian].
10. A.Wagner, W.P.Tan, B.Davin et al., Nucl. Instrum. Metho. Phys. A, 456, 290 (2001). http://dx.doi.org/10.1016/S0168-9002(00)00542-8
11. M.-J.van Goethema, M.S.Wallacea, B.E.Nett et al., Nuclear Instruments and Methods in Physics Research Section A, 526, 455 (2004). http://dx.doi.org/10.1016/j.nima.2004.02.038
12. H.?Alvarez-Pol, V.Avdeichikov, M.Bendel et al., GSI SCIENTIFIC REPORT 2010. PHN-NUSTAR-NR-23, 185 (2010).
13. V.I.Goriletsky, B.V.Grinyov, B.G.Zaslavsky et al., Crystal Growth. Alkali Metal Halides, Akta, Kharkov (2002) [in Russian].
14. L.N.Trefilova, A.M.Kudin, L.V.Kovaleva et al., Nucl. Instrum. Meth. Phys. A 486, 474 (2002). http://dx.doi.org/10.1016/S0168-9002(02)00756-8
15. R.N.Kochurova, Based on Practical Petrography, L.: Publishing House of Leningrad University (1977) [in Russian].
16. http://www.egotex.com/membrane.htm
18. http://www.dialindicator.com/electronic_logic_basic.php
19. M.Margulies, P.Witomski, T.Duffar, J. Cryst. Growth, 266, 175 (2004). http://dx.doi.org/10.1016/j.jcrysgro.2004.02.043