Funct. Mater. 2015; 22 (1): 20-26.

http://dx.doi.org/10.15407/fm22.01.020

Nonlinear optical response of the nematic liquid crystal doped with polymer-azo-dye complex under picosecond laser pulses excitation

A.V.Uklein1, E.V.Ouskova2,3, V.Ya.Gayvoronsky1

1Institute of Physics, National Academy of Sciences of Ukraine, 46 Prospect Nauki, 03680 Kyiv, Ukraine
2Beam Engineering for Advanced Measurements Co., 809 South Orlando Ave., Suite I, Winter Park, 32789 FL, USA
3Department of Applied Physics, Aalto University School of Science, P.O.Box 13500 FI-00076 AALTO, Espoo, Finland

Abstract: 

The nonlinear optical (NLO) response of the heterosystem based on nematic liquid crystal (LC) with incorporated polymer-azo-dye complex (PADC) was studied within the self-action of picosecond laser pulses at 532 nm. It was shown the enhancement of the refractive NLO response efficiency up to 20 % at lower excitation level (0.5-20 MW/cm2) and up to 5 times at higher excitation level (20-600 MW/cm2) for the PADC doped LC versus the components response and conventional azo-dye doped LC. The manifestation of three photoinduced mechanisms was observed with the rise of the PADC concentration in LC matrix: 1) orientation of the PADC; 2) trans-cis-trans isomerization; 3) cooperative response/aggregation effect. Each mechanism defines the heterosystem NLO response at corresponding PADC concentration range. The proposed smart material is promising for photonic application due to NLO properties control with variation of the PADC concentration.

Keywords: 
nonlinear optical response, photoinduced refractive index variation, polymer-azo-dye complex, nematic liquid crystal, trans-cis isomerization, cooperative response, aggregation effect, orientation of polymer-azo-dye complex
References: 

1. E.Ouskova, O.Buchnev, V.Reshetnyak et al., Liq. Cryst., 30, 1235 (2003). http://dx.doi.org/10.1080/02678290310001601996

2. E.Ouskova, O.Buluy, C.Blanc et al., Mol. Cryst. Liq. Cryst., 525, 104 (2010). http://dx.doi.org/10.1080/15421401003796108

3. E.Ouskova, D.Lysenko, S.Ksondzyk et al., Mol. Cryst. Liq. Cryst., 545, 123/[1347] (2011).

4. E.Ouskova, J.Vapaavuori, M.Kaivola, Opt. Mater. Exp., 1, 1463 (2011). http://dx.doi.org/10.1364/OME.1.001463

5. E.Ouskova, M.Kaivola, Opt. Mater. Exp., 2, 1056 (2012). http://dx.doi.org/10.1364/OME.2.001056

6. A.V.Uklein, A.A.Vasko, E.V.Ouskova et al., Opt. Commun., 296, 79 (2013). http://dx.doi.org/10.1016/j.optcom.2013.01.011

7. E.Ouskova, A.Pshenychnyi, A.Sanchez-Ferrer et al., JOSA B, 31, 1456 (2014) http://dx.doi.org/10.1364/JOSAB.31.001456

8. I.A.Budagovsky, A.S.Zolot?ko, V.N.Ochkin et al., Zh. Eksper. Teor. Theor. Fiz., 106, 172 (2008).

9. E.A.Babayan, I.A.Budagovsky, S.A.Shvetsov et al., Phys. Rev. E, 82, 061705 (2010). http://dx.doi.org/10.1103/PhysRevE.82.061705

10. I.A.Budagovsky, V.N.Ochkin, M.P.Smayev et al., Liq. Cryst., 36, 101 (2009). http://dx.doi.org/10.1080/02678290802684575

11. V.Ya.Gayvoronsky, L.A.Golovan, M.A.Kopylovsky et al., Quant. Electron., 41, 257 (2011). http://dx.doi.org/10.1070/QE2011v041n03ABEH014416

12. V.Ya.Gayvoronsky, M.A.Kopylovsky, M.S.Brodyn et al., Laser Phys. Lett., 10, 035401 (2013). http://dx.doi.org/10.1088/1612-2011/10/3/035401

13. V.Ya.Gayvoronsky, M.A.Kopylovsky, M.S.Brodyn et al., in: Nanomaterials Imaging Techniques, Surface Studies, and Applications, Edition: Springer Proceedings in Physics 146, New York, USA (2013), p.349. http://dx.doi.org/10.1007/978-1-4614-7675-7_24

14. V.Gayvoronsky, V.Timoshenko, M.Brodyn et al., Phys. Stat. Solidi (c), 2, 3303 (2005). http://dx.doi.org/10.1002/pssc.200461150

15. N.L.Dmitruk, A.V.Goncharenko, E.F.Venger, Optics of Small Particles and Composite Media, Naukova Dumka, Kyiv (2009).

16. V.Ya.Gayvoronsky, A.V.Uklein, A.O.Gerasov et al., J. Mol. Struct., 1045, 191 (2013). http://dx.doi.org/10.1016/j.molstruc.2013.03.061

17. V.Ya.Gayvoronsky, S.Yakunin, V.Nazarenko et al., Mol. Cryst. Liq. Cryst., 426, 231 (2005). http://dx.doi.org/10.1080/15421400590891173

Current number: