Funct. Mater. 2015; 22 (1): 40-46.
The influence of carbon nanotubes on the sensitivity of humidity sensors based on organic-inorganic polymer materials
1Mykolayiv National University V.O.Sukhomlynskiy, 24 Nikolska Str., 54030 Mykolayiv, Ukraine
2Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkivske Shosse, 02160 Kyiv, Ukraine
The method of sol-gel synthesis of ion-conducting organic-inorganic polymeric nanocomposites modified with carbon nanotubes in amount of 0.1-1.0 wt. %. was developed. The obtained materials were used for fabrication of humidity sensors which were investigated for their sensor properties. It was established that sensor characteristics of the developed materials are significantly dependent on carbon nanotubes content that caused by percolation processes. The optimum characteristics were shown by the material based on organic-inorganic matrix filled with 0.1 % carbon nanotubes.
1. Y.Wang, J.T.W.Yeow, J. Sens., 1 (2009). http://dx.doi.org/10.1155/2009/493904
2. W.Bauhofer, J.Z.Kovacs, Compos. Sci. Technol., 69, 1486 (2009). http://dx.doi.org/10.1016/j.compscitech.2008.06.018
3. E.A.Lysenkov, Y.V.Yakovlev, V.V.Klepko, Ukr. Phys., J, 58, 378 (2013).
4. M.Rahmat, P.Hubert, Compos. Sci. Technol., 72, 72 (2011). http://dx.doi.org/10.1016/j.compscitech.2011.10.002
5. T.Kashiwagi, E.Grulke, J.Hilding et al., Polymer, 45, 4227 (2004). http://dx.doi.org/10.1016/j.polymer.2004.03.088
6. L.N.Lisetski, A.M.Chepikov, S.S.Minenko et al., Functional. Materials, 18, 143 (2011).
7. L.N.Lisetski, N.I.Lebovka, S.V.Naydenov et al., J. Mol. Liq., 164, 143 (2011). http://dx.doi.org/10.1016/j.molliq.2011.04.020
8. J.N.Coleman, Adv. Funct. Mater., 19, 3680 (2009). http://dx.doi.org/10.1002/adfm.200901640
9. E.A.Lysenkov, N.I.Lebovka, Y.V.Yakovlev et al., Compos. Sci. Technol., 72, 1191 (2012). http://dx.doi.org/10.1016/j.compscitech.2012.04.002
10. H.-Z.Chen, R.Bai, L.Cao et al., Res. Chem. Intermediates, 34, 115 (2008). http://dx.doi.org/10.1163/156856708783623528
11. Q.Y.Tang, Y.C.Chan, K.L.Zhang, Sens. Actuators B, 152, 96 (2011). http://dx.doi.org/10.1016/j.snb.2010.09.016
12. Y.Li, L.J.Hong, Y.S.Chen et al., Sens. Actuators B, 123, 554 (2007). http://dx.doi.org/10.1016/j.snb.2006.09.057
13. H.H.Yu, T.Cao, L.D.Zhou et al., Sens. Actuators B, 119, 512 (2006). http://dx.doi.org/10.1016/j.snb.2005.12.048
14. A.Matsuda, Y.Nono, K.Tadanaga, Solid State Ionics, 162-163, 253 (2003). http://dx.doi.org/10.1016/S0167-2738(03)00237-6
15. J.Zeng, A.Almadidy, J.Watterson, Sens. Actuators, 90, 68 (2003). http://dx.doi.org/10.1016/S0925-4005(03)00023-6
16. A.Trinchi, Y.X.Li, W.Wlodarski, Sens. Actuators, 95, 145 (2003). http://dx.doi.org/10.1016/S0925-4005(03)00424-6
17. F.Qiu, Q.Zhu, X.Yang, Sens. Actuators, 93, 237 (2003). http://dx.doi.org/10.1016/S0925-4005(03)00184-9
18. A.Bearzotti, J.M.Bertolo, P.Innocenzi, Sens. Actuators, 95, 107 (2003). http://dx.doi.org/10.1016/S0925-4005(03)00416-7
19. V.V.Shilov, O.A.Shilova, L.N.Efimova et al., Perspect. Mater., b, 31, 31 (2003).
20. O.A.Shilova, S.V.Hashkovsky, E.V.Tarasyuk, J. Sol-Gel Sci.&Technol., 25, 1131 (2003). http://dx.doi.org/10.1023/A:1020723210877
21. A.V.Stryutskiy, E.A.Lysenkov, A.R.Zolotarev et al., Ukr. Khim. J., 77, 116 (2011).
22. A.V.Melezhyk, Yu.I.Sementsov, V.V.Yanchenko, Prikl. Khim., 78, 938 (2005).
23. A.Kyritsis, P.Pissis, J.Grammatikakis, J. Polymer Sci.:Part B: Polymer Phys., 33, 1737 (1995). http://dx.doi.org/10.1002/polb.1995.090331205
24. V.S.Kolosnitsyn, G.P.Dukhanin, S.A.Dumler et al., Russ. J. of Appl. Chem., 78, 1 (2005). http://dx.doi.org/10.1007/s11167-005-0222-2
25. V.V.Shevchenko, A.V.Stryutskii, N.S.Klimenko, Theor. Exp. Chem., 47, 67 (2011). http://dx.doi.org/10.1007/s11237-011-9187-9
26. E.A.Lysenkov, V.V.Klepko, V.M.Golovanets et al., Ukr. J. Phys., 59, 906 (2014). http://dx.doi.org/10.15407/ujpe59.09.0906
27. E.A.Lysenkov, Yu.P.Gomza, V.V.Davidenko et al., Phys. Cond. Macromol. Systems, 14, 15 (2010).