Funct. Mater. 2015; 22 (2): 162-168.

http://dx.doi.org/10.15407/fm22.02.162

Contact relaxation phenomena in nano-structured composite materials

Yu.I.Boyko[1], M.A.Volosyuk[2], A.V.Volosyuk[2], N.Ya.Rokhmanov[3]

[1] V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
[2] Kharkiv National Automobile and Highway University, 25 Petrovskogo St., 61002 Kharkiv, Ukraine
[3] V.Dokuchaev Kharkiv National Agrarian University, p/o Communist-1, 62483 Kharkiv, Ukraine

Abstract: 

There are discussed physical mechanisms of some effects related to both nano-material granularity and existence of the strongly branched contact area separating the nano-size grains. In the area the relaxation processes take place including electron level, i.e. substantial reconstruction of the electron subsystem and charge state in the grain boundary area. Estimations have been carried out for a concrete nano-composite material formed by metal and semiconductor substances with different charge volume density in the conductivity band. On the basis of the estimations and discussion, conclusion has been done on the possibility for controlled varying the phase and structure state as well as physical properties (magnetic, electrical, optical, etc.) of the nano-structured material by changing the granularity and composition.

Keywords: 
nano-structured composite materials, contact phenomena, granularity.
References: 

1. V.N.Nechayev, A.V.Viskovatykh, Fiz. Tverdogo Tela, 57, 704 (2015).

2. Y.Yafet, E.M.Gyorgy, Phys. Rev. B, 38, 9145 (1988). http://dx.doi.org/10.1103/PhysRevB.38.9145

3. A.I.Buzdin, Rev. Mod. Phys., 77, 935 (2005). http://dx.doi.org/10.1103/RevModPhys.77.935

4. L.Lahoche, I.Luk'yanchuk, G.Pascoli, Integr. Ferroelectrics, 99, 60 (2008). http://dx.doi.org/10.1080/10584580802107684

5. E.N.Latysheva, A.L.Pirozerskiy, E.V.Charnaya et al., Fiz. Tverdogo Tela, 57, 124 (2015).

6. H.K.Christenson, J. Phys.:Cond. Matter., 13, R 95 (2001).

7. Q.Xu, I.D.Sharp, C.W.Yuan et al., Phys. Rev. Lett., 97, 155 701 (2006).

8. F.Caupin, Phys. Rev. B, 77, 184 108 (2008).

9. S.D.Milovidova, O.V.Rogazinskaya, A.S.Sidorkin et al., Fiz. Tverdogo Tela, 57, 498 (2015).

10. N.B.Yershov, Yu.P.Chernenkov, V.I.Fedorov et al., Fiz. Tverdogo Tela, 56, 2146 (2014).

11. V.N.Nechayev, A.V.Viskovatykh, Fiz. Tverdogo Tela, 56, 1930 (2014).

12. Yu.A.Bayimova, R.T.Murzayev, S.V.Dmitriyev, Fiz. Tverdogo Tela, 56, 1946 (2014).

13. A.P.Bakhtinov, V.N.Vodop'yanov, Z.D.Kovalyuk et al., Fiz. Tverdogo Tela, 56, 2050 (2014).

14. N.M.Borisova, M.B.Gorshenkov, A.A.Koval et al., Fiz. Tverdogo Tela, 56, 1284 (2014).

15. D.V.Sivukhin, General Course of Physics, Nauka, Moscow (1985) [in Russian].

16. Physical Encyclopedia, Soviet. Encyclopedia, Moscow (1998) [in Russian].

17. Ch.Kittel, Introduction in Physics of Solids, Nauka, Moscow (1978) [in Russian].

18. E.S.Borovik, A.S.Milner, Lectures on Ferromagnetism, Kharkov State University Press, Kharkov (1960) [in Russian].

19. E.Parcell, Electricity and Magnetism, Nauka, Moscow (1971) [in Russian].

Current number: