Funct. Mater. 2015; 22 (2): 199-206.

http://dx.doi.org/10.15407/fm22.02.199

In vitro study of NCs/dyes complexes accumulation and dyes release kinetics in rat hepatocytes

S.L.Yefimova, T.N.Tkacheva, N.S.Kavok, V.K.Klochkov, A.V.Sorokin

Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

Using fluorescence microspectoscopy and FRET-labeling of various nano-scale carriers (NCs) the efficiency and kinetics of NCs/dye molecules complexes accumulation in living cells and dye release have been studied. Organic liposome vesicles and inorganic nanoparticles (CeO2 and GdYVO4:Eu3+) were used as NCs. NCs/dyes complexes formed in aqueous solutions have been characterized. It has been shown that NCs based on GdYVO4:Eu3+ nanoparticles exhibit the most effective accumulation in cells and provide very fast release of the lipophilic cargo (dyes molecules). Lipophilic compound (cholesterol) embedded into the NCs/dyes complexes decreases noticeably the rate of lipophilic dyes release and reduces the affinity of the complex interaction with hepatocytes. GdYVO4:Eu3+ NPs could be used as a nano-scale platform for controlled intracellular delivering of hydrophobic agents.

Keywords: 
nano-scale carriers, Forster Resonance Energy Transfer, dye release, cholesterol, living cells.
References: 

1. O.V.Salata, J. Nanobiotechn., 2, 1 (2004). http://dx.doi.org/10.1186/1477-3155-2-3

2. M.Soloviev, J. Nanotechnology, 5, 11 (2007).

3. S.Bamrungsap, Z.Zhao, T.Chen et al., Nanomedicine, 7, 1253 (2012). http://dx.doi.org/10.2217/nnm.12.87

4. S.Parveen, R.Mishra, S.K.Sahoo, Nanomed: Nanotech, Biol, and Med., 8, 147 (2012).

5. L.Zhang, F.X.Gu, J.M.Chan et al., Clinic. Pharmacol. & Therapeut.s, 83, 761 (2008). http://dx.doi.org/10.1038/sj.clpt.6100400

6. Y.Liu, T-S.Niu, L.Zhang et al., Nat. Sci., 2, 41 (2010).

7. D.Peer, J.M.Karp, S.Hong et al., Nat. Nanotechnology, 2, 751 (2007). http://dx.doi.org/10.1038/nnano.2007.387

8. J.Panyam, V.Labhasetwar, Adv. Drug Deliv. Rev., 55, 329 (2003). http://dx.doi.org/10.1016/S0169-409X(02)00228-4

9. J.W.Nichols, Y.H.Bae, Nano Today, 7, 606 (2012). http://dx.doi.org/10.1016/j.nantod.2012.10.010

10. C.Bouzigues, Th.Gacoin, A.Alexandrou, ACS Nano, 5, 8488 (2011). http://dx.doi.org/10.1021/nn202378b

11. A.B.Shcherbakov, N.M.Zholobak, N.Ya.Spivak et al., Zh. Neorgan. Khimii, 59, 1556 (2014).

12. S.Das, J.M.Dowding, K.E.Klump et al., Nanomedicine, 8, 1483 (2013). http://dx.doi.org/10.2217/nnm.13.133

13. V.K.Klochkov, A.V.Grigorova, O.O.Sedyh et al., Colloids and Surfaces A: Physicochemical and Engineer Aspects, 409, 176 (2012). http://dx.doi.org/10.1016/j.colsurfa.2012.06.019

14. E.A.Averchenko, N.S.Kavok, V.K.Klochkov et al., J. Appl. Spectrosc., 81, 754 (2014). http://dx.doi.org/10.1007/s10812-014-0012-9

15. T.N.Tkacheva, S.L.Yefimova, V.K.Klochkov et al., J. Mol. Liquids, 199, 244 (2014). http://dx.doi.org/10.1016/j.molliq.2014.09.023

16. J.R.Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht, London, Moscow (1999).

17. A.P.Demchenko, J. Fluorescence, 20, 1099 (2010). http://dx.doi.org/10.1007/s10895-010-0644-y

18. S.L.Yefimova, A.S.Lebed', G.Ya.Guralchuk et al., Biopolymer and Cell, 27, 47 (2011). http://dx.doi.org/10.7124/bc.000081

19. S.L.Yefimova, I.Yu.Kurilchenko, T.N.Tkacheva et al., J. Fluorescence, 24, 403 (2014). http://dx.doi.org/10.1007/s10895-013-1305-8

20. B.Mui, L.Chow, M.J.Hope, Meth. Enzym., 367, 3 (2003). http://dx.doi.org/10.1016/S0076-6879(03)67001-1

21. S.-R.Wang, G.Renaud, J.Infante et al., In Vitro Cell. Dev. Biol., 21, 526 (1985). http://dx.doi.org/10.1007/BF02620846

22. R.P.Hauglang, Handbook of Fluorescent Probes and Research Products. Molecular Probes, New York (2002).

23. H.Chen, S.Kim, W.He et al., Langmuir, 24, 5213 (2008). http://dx.doi.org/10.1021/la703570m

24. H.Chen, S.Kim, L.Li et al., Proc. Nat. Acad. Sci. USA, 105, 6596 (2008). http://dx.doi.org/10.1073/pnas.0707046105

25. J.Lu, S.C.Owen, M.S.Shoichet, Macromolecules, 44, 6002 (2011). http://dx.doi.org/10.1021/ma200675w

26. A.Mishra, R.Behera, P.K.Behera et al., Chem. Rev., 100, 1973 (2000). http://dx.doi.org/10.1021/cr990402t

27. A.Verma, F.Stellacci, Small, 6, 12 (2010). http://dx.doi.org/10.1002/smll.200901158

28. B.Y.Moghadam, W.-C.Hou, C.Corredor et al., Langmuir, 28, 16318 (2012). http://dx.doi.org/10.1021/la302654s

29. H.Ding, Yu.Ma, Small, doi: 10.1002/ smll.201401943 (2014).

30. J.L.Goldstein, R.G.W.Anderson, M.S.Brown, Nature, 279, 679 (1979). http://dx.doi.org/10.1038/279679a0

31. G.Pasa, U.S.Mishra, N.K.Tripathy et al., J. Pharm., 2, 97 (2012).

Current number: