Funct. Mater. 2015; 22 (2): 207-211.

http://dx.doi.org/10.15407/fm22.02.207

Fluorescence of cyanine dye excimers
in nanoporous silica

A.V.Sorokin, B.A.Gnap, I.I.Bespalova, S.L.Yefimova

Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

Adsorption of cyanine dye DiI in a nanopous SiO2 matrix has been studied. It was shown that the increase of the dye concentration in the SiO2 matrix provokes the appearance of an additional red-shifted band of excimer nature in the dye fluorescence spectrum without any changes in the absorption one. Static character of the dye excimer formation was revealed. Enhanced dye concentration due to spatial confinement in a nanopore volume has been supposed as a reason of the effective excimer formation.

Keywords: 
cyanine dye, nanoporous silica, excimer, fluorescence.
References: 

1. G.Q.Lu, X.S.Zhao (Eds.), Nanoporous Materials: Science and Engineering, Imperial College Press, London, 900 (2004).

2. S.Ernst (Ed.), Advances in Nanoporous Materials, Elsevier, Oxford, 312 (2009).

3. A.Dubois et al., Appl. Opt., 35, 3193 (1996). http://dx.doi.org/10.1364/AO.35.003193

4. R.Reisfeld, J. Fluorescence, 12, 317 (2002). http://dx.doi.org/10.1023/A:1021397422976

5. G.Calzaferri et al., J. Mater. Chem., 12, 1 (2002). http://dx.doi.org/10.1039/b106141k

6. O.N.Bezkrovnaya et al., J. Non-Crystal. Solids, 389, 11 (2014). http://dx.doi.org/10.1016/j.jnoncrysol.2014.01.052

7. J.D.Wright, N.A.J.M.Sommerdijk, Sol-Gel Materials: Chemistry and Applications, Taylor & Francis, London, 125 (2001).

8. J.K.Thomas, E.H.Ellison, Adv. Coll. Interf. Sci., 195, 89 (2001).

9. B.A.Gnap et al., Functional Materials, 18, 487 (2011).

10. B.A.Gnap et al., Functional Materials, 20, 407 (2013). http://dx.doi.org/10.15407/fm20.03.407

11. J.B.Birks, Rep. Prog. Phys., 38, 903 (1975). http://dx.doi.org/10.1088/0034-4885/38/8/001

12. K.A.Zachariasse in Photochemistry on Solid Surfaces ed. by M.Anpo, T.Matsuura, Elsevier, Amsterdam, Oxford, New York, Tokyo, 48 (1989).

13. T.Fujii et al., J. Photochem. Photobiol. A, 86, 219 (1995). http://dx.doi.org/10.1016/1010-6030(94)03947-S

14. R.Dabestani et al., J. Phys. Chem. C, 112, 11468 (2008). http://dx.doi.org/10.1021/jp803217p

15. E.Wellner et al., Langmuir, 2, 616 (1986). http://dx.doi.org/10.1021/la00071a016

16. A.Thomas et al., J. Phys. Chem. B, 107, 5081 (2003). http://dx.doi.org/10.1021/jp026587g

17. M.E.Sigman et al., New. J. Chem., 20, 243 (1996).

18. J.T.Barbas et al., J. Photochem. Photobiol. A, 109, 229 (1997). http://dx.doi.org/10.1016/S1010-6030(97)00148-2

19. T.A.Blank et al., Functional Materials, <b%0>16, 517 (2009).

20. J.M.Drake, J.Klafter, J. Luminescence, 642, 31(1984).

21. S.L.Yefimova et al., Appl. Phys. A, 116, 2131 (2014). http://dx.doi.org/10.1007/s00339-014-8418-z

22. T.Fujii, E.Shimizu, Chem. Phys. Lett., 137, 448 (1987). http://dx.doi.org/10.1016/0009-2614(87)80231-2

23. W.West, S.Pearce, J. Phys. Chem., 69, 1894 (1965). http://dx.doi.org/10.1021/j100890a019

Current number: