Вы здесь

Funct. Mater. 2015; 22 (2): 219-224.

http://dx.doi.org/10.15407/fm22.02.219

Age-associated features of mitochondrial potential (ΔΨm) changes induced by rare-earth based nanoparticles

K.A.Averchenko, N.S.Kavok, V.K.Klochkov, S.L.Yefimova, M.Yu.Malyukina, O.O.Sedyh, S.A.Klimov

Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

Age-specific effects of redox-active nanoparticles (NPs) (rare-earth orthovanadates and CeO2) of various geometrical parameters on mitochondrial potential (ΔΨm) have been studied in isolated rat hepatocytes. It was shown that extra small (1-2 nm) CeO2 NPs at high concentrations cause a slight decrease of ΔΨm only in the hepatocytes of 3-month-old rats. The orthovanadate NPs suppress ΔΨm in concentration-dependent manner, whereas the sensitivity of mitochondria to the lower NPs concentration is higher for 20 month-old rats. Thiol protector glutathione was shown to prevent completely NPs-induced ΔΨm decrease. For the old animals, thiol protection against the NPs as well as exogenic pro-oxidants (H2O2 and t-BHP) action was more expressed. ΔΨm stabilization in the presence of the NPs was observed at pro-oxidant conditions only for the young rats. It was suggested that the reduction of mitochondrial functions under effect of the orthovanadate NPs is due to increase of reactive oxygen species (ROS) production, and it had age-related character and depended on the thiol buffer system.

Keywords: 
Rare-earth based nanoparticles, oxidative stress, mitochondrion, hepatocytes, prooxidant, antiradical, age.
References: 

1. T.N.Tkacheva, S.L.Yefimova, V.K.Klochkov et al., J. Mol. Liq., 199, 244 (2014). http://dx.doi.org/10.1016/j.molliq.2014.09.023

2. T.N.Tkacheva, S.L.Yefimova, V.K.Klochkov et al., Biopolymers and Cell, 30, 314 (2014). http://dx.doi.org/10.7124/bc.0008A7

3. V.K.Klochkov, A.V.Grigorova, O.O.Sedyh, Yu.V.Malyukin, J. Appl. Spectr., 79, 726 (2012). http://dx.doi.org/10.1007/s10812-012-9662-7

4. V.K.Klochkov, A.V.Grigorova, O.O.Sedyh, Yu.V.Malyukin, Colloids and Surfaces A: Physicochem. Engin. Aspects, 409, 176 (2012). http://dx.doi.org/10.1016/j.colsurfa.2012.06.019

5. K.A.Kelly, J.R.Allport, A.Tsourkas et al., Circ. Res., 96, 327 (2005). http://dx.doi.org/10.1161/01.RES.0000155722.17881.dd

6. D.Casanova, C.Bouzigues, T.L.Nguyen et al., Nat. Nanotechnol., 4, 581 (2009). http://dx.doi.org/10.1038/nnano.2009.200

7. J.Colon, N.Hsieha, A.Fergusona et al., Nanomedicine: Nanotechnol. Biol. Med., 6, 738 (2010). http://dx.doi.org/10.1016/j.nano.2010.01.010

8. N.M.Zholobak, V.K.Ivanov, A.B.Shcherbakov et al., J. Photochem. Photobiol. B: Biol., 32, 102 (2011).

9. C.Korsvik, S.Patil, S.Seal, W.T.Self, Chem. Commun., 14, 1056 (2007). http://dx.doi.org/10.1039/b615134e

10. E.G.Heckert, A.S.Karakoti, S.Seal, W.T.Self, Biomaterials, 29, 2705 (2008). http://dx.doi.org/10.1016/j.biomaterials.2008.03.014

11. A.S.Karakoti, S.Singh, A.Kumar et al., J. Am. Chem. Soc., 131, 14144 (2009). http://dx.doi.org/10.1021/ja9051087

12. D.Schubert, R.Dargusch, J.Raitano, S.W.Chan, Biochem. Biophys. Res. Commun., 342, 86 (2006). http://dx.doi.org/10.1016/j.bbrc.2006.01.129

13. J.Y.Ma, H.Zhao, R.R.Mercer et al., Nanotoxicol., 5, 312 (2011). http://dx.doi.org/10.3109/17435390.2010.519835

14. H.J.Eom, J.Choi, Toxicol. Lett., 187, 77 (2009). http://dx.doi.org/10.1016/j.toxlet.2009.01.028

15. L.B.Chen, Ann. Rev. Cell Biology, 4, 155 (1988). http://dx.doi.org/10.1146/annurev.cb.04.110188.001103

16. D.V.Krysko, F.Roels, L.Leybaert et al., J. Histochem Cytochem., 49, 1277 (2001). http://dx.doi.org/10.1177/002215540104901010

17. I.Charles, A.Khalyfa, D.M.Kumar et al., Invest Ophthalmol. Vis. Sci., 46, 1330 (2005). http://dx.doi.org/10.1167/iovs.04-0363

18. F.Di Lisa, P.S.Blank, R.Colonna et al., J. Physiology, 486, 1 (1995). http://dx.doi.org/10.1113/jphysiol.1995.sp020786

19. A.Mathur, Y.Hong, B.K.Kemp et al., Cardiovascular Res., 46, 126 (2000). http://dx.doi.org/10.1016/S0008-6363(00)00002-X

20. V.K.Klochkov, N.S.Kavok, A.V.Grigorova et al., Mater. Sci. Eng. C, 33, 2708 (2013). http://dx.doi.org/10.1016/j.msec.2013.02.046

21. N.S.Kavok, K.A.Averchenko, V.K.Klochkov et al., Eur. Phys. J. E, 37, 12 (2014). http://dx.doi.org/10.1140/epje/i2014-14127-9

22. U.De Rossi, J.Moll, M.Spieles et al., J. Prakt. Chem., 337, 203 (1995). http://dx.doi.org/10.1002/prac.19953370144

23. A.Y.Petrenko, V.P.Grishuk, A.N.Sukach et al., Biochemistry, 54, 1952 (1989).

24. H.Schneckenburger, P.Gessler, I.Pavenst et al., J. Histochunistry and Cytochem., 40, 1573 (1992). http://dx.doi.org/10.1177/40.10.1527376

25. J.Vigo, J.M.Salmon, S.Lahmy et al., Anal. Cell Pathol., 3, 145 (1991).

26. G.Diaz, A.M.Falchi, F.Gremo et al., FEBS Lett., 475, 218 (2000). http://dx.doi.org/10.1016/S0014-5793(00)01683-5

27. E.C.Toescu, A.Verkhratsky, Pflugers Archiv Eur. J. Physiology, 440, 941 (2000). http://dx.doi.org/10.1007/s004240000390

28. O.I.Wagner, J.Lifshitz, P.A.Janmey et al., J. Neurosci., 23, 9046 (2003).

29. E.A.Averchenko, N.S.Kavok, V.K.Klochkov et al., J. Appl. Spectr., 81, 754 (2014). http://dx.doi.org/10.1007/s10812-014-0012-9

30. C.Buzea, I.Pacheco Blandino, K.Robbie, Biointerphases, 2, MR17 (2007). http://dx.doi.org/10.1116/1.2815690

31. Zh.I.Abramova, G.I.Oksengendler, Humans and Antioxidants, Nauka, Leningrad (1985) [in Russian].

Current number: