Funct. Mater. 2015; 22 (2): 245-251.

http://dx.doi.org/10.15407/fm22.02.245

Hydrodynamical conditions in the melt at the growth of sapphire and YAG crystals by horizontal directed crystallization

S.V.Nizhankovskyi, A.V.Tan'ko

Institute for Single Crystals, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001, Kharkiv, Ukraine

Abstract: 

Investigated are the hydrodynamical conditions in the melt at the growth of sapphire and yttrium-aluminum garnet (YAG) by the method of horizontal directed crystallization. Specific features of the formation of convective structures depending on the temperature conditions, geometrical parameters of the melt zone and crystal growth stage, are established. It is shown that at the growth of massive (>= 40-50 mm) sapphire and YAG crystals the two-layer structure of the melt flow may be formed at the crystallization front.

Keywords: 
simulation, convection, sapphire, YAG, HDC method.
References: 

1. L.A.Grin, A.T.Budnikov, N.S.Sidelnikova et al., Functional Materials, 20, 111 (2013). http://dx.doi.org/10.15407/fm20.01.111

2. S.V.Nizhankovsky, A.Ya.Dan'ko, Yu.V.Zorenko et al., Phys. Solid State, 53, 1542 (2011). http://dx.doi.org/10.1134/S1063783411010215

3. M.H.Tavakoli, J. Cryst.Growth, 310, 2955 (2008). http://dx.doi.org/10.1016/j.jcrysgro.2008.03.017

4. S.E.Demina, E.N.Bystrova, V.V.Kalaev et al., Opt. Mater., 30, 62 (2007). http://dx.doi.org/10.1016/j.optmat.2006.11.012

5. Chung-Wei Lu, Pei-Hung Chi, Cryst. Res. Technol., 42, 1259 (2007). http://dx.doi.org/10.1002/crat.200711015

6. Banerjee, Jyotirmay, Muralidhar, J. Cryst. Growth, 286, 2 (2006). http://dx.doi.org/10.1016/j.jcrysgro.2005.10.114

7. Kh.S.Bagdasarov, High-temperature Crystallization from Melt, Fismatlit (2004) [in Russian].

8. M.Putilin, Yu.A.Belyakova, V.P.Golovko, Synthesis of Minerals, v.2, Nedra, Moscow (1987) [in Russian].

9. C.W.Lan, M.C.Su, M.C.Liang, J. Cryst. Growth, 208, 717 (2000). http://dx.doi.org/10.1016/S0022-0248(99)00395-4

10. M.C.Liang, C.W.Lan, J. of Crystal Growth, 180, 381 (1997). http://dx.doi.org/10.1016/S0022-0248(97)00269-8

11. G.Muller, Crystal Growth from the Melt, Springer-Verlag, Berlin (1988). http://dx.doi.org/10.1007/978-3-642-73208-9

12. R.Krishnamurti, J. Fluid Mechan., 60, 285 (1973). http://dx.doi.org/10.1017/S0022112073000170

13. Yu.Lingart, M.Pankevich, Theory and Practice of Large Size Industrial Crystal Growth of Optical Materials, RT+RS SERVIS, Prague (2012) [in Russian].

14. E.R.Dobrovinskaya, L.A.Lytvynov, V.Pishchik, Sapphire. Material, Manufacturing, Applications, Springer Science+Business Media, LLC (2009).

15. M.A.Maurach, B.S.Mitin, Liquid Oxides, Metallurgiya, Moscow (1979) [in Russian].

16. P.-F.Paradis, T.Aoyama, S.Yoda et al., J. Crystal Growth, 249, 523 (2003). http://dx.doi.org/10.1016/S0022-0248(02)02321-7

17. A.Golubovic, S.Nikolic, R.Gajic et al., Chem. Soc., 67, 4 (2002).

18. A.A.Kaminskii, Laser Crystals: Their Physics and Properties, Springer, Berlin (1990). http://dx.doi.org/10.1007/978-3-540-70749-3

19. B.L.Timan, O.D.Kolotiy, E.R.Dobrovinskaya, V.V.Pishchik, Crystallography, 23, (1978).

20. ANSYS, Inc. ANSYS User's Guide Documentation.

21. S.V.Nizhankovskyi, A.V.Tan'ko, N.S.Sidelnikova, G.T.Adonkin, Cryst. Res. Technol., 50, 223 (2015). http://dx.doi.org/10.1002/crat.201400430

Current number: