Funct. Mater. 2015; 22 (3): 327-331.

http://dx.doi.org/10.15407/fm22.03.327

Morphology of Van der Waals surfaces and magnetic hysteresis in cobalt intercalated InTe

V.B.Boledzyuk[1], Z.D.Kovalyuk[1], Z.R.Kudrynskyi[1], A.D.Shevchenko[2]

[1] I.Frantsevich Institute of Materials Science Problems (Chernivtsi Branch), National Academy of Sciences of Ukraine, 5 I.Vilde Str., 58001 Chernivtsi, Ukraine
[2] G.Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, 36 Akad. Vernadskogo Ave., 03680 Kyiv, Ukraine

Abstract: 

The influence of Co2+ intercalation on the properties of InTe monocrystals was investigated. The intercalation of cobalt in InTe are not leading to change of the crystal lattice parameters, leaving the same structural type of the samples. It is established that in investigated intercalates on the Van der Waals surfaces of InTe layers there is formation clusters impurity, which consist from cobalt nanoparticles of the pyramidal form. Cobalt intercalated InTe possesses ferromagnetic properties: the dependence of its magnetic moment from magnetic field has the form of hysteresis loop that is characteristic for ferromagnets.

Keywords: 
intercalation, InTe, magnetic-field gradient, 3d-metals, hysteresis
References: 

1. V.G.Dmitriev, G.G.Gurzadyhan, D.N.Nikogosyan, Handbook of Nonlinear Optical Crystals, Springer, Berlin (1997). http://dx.doi.org/10.1007/978-3-540-68392-6

2. C.Kubler, R.Huber, S.Tubel et al., App. Phys. Lett., 85, 3360 (2004). http://dx.doi.org/10.1063/1.1808232

3. G.V.Lashkarev, A.I.Dmitriev, M.V.Radchenko et al., in: Proc. 6th Conf. on Nuclear and Particle Physics, Luxor, Egypt (2007).

4. Yu.I.Zhirko, Z.D.Kovalyuk, M.M.Pyrlja et al., in: Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, ed. T.N.Veziroglu, Springer (2007).

5. F.A.Levy (ed.), Intercalated Layered Materials, Reidel, Dordrecht (1979). http://dx.doi.org/10.1007/978-94-009-9415-7

6. R.Shollhorn, Physica B, 99B, 89 (1980). http://dx.doi.org/10.1016/0378-4363(80)90215-6

7. J.H.C.Hogg, H.H.Sutherland, Acta Cryst., B32, 2689 (1976). http://dx.doi.org/10.1107/S056774087600856X

8. T.Chattopadhyay, R.P.Santandrea, H.G.Von Schering, Phys. Chem. Solids, 46, 351 (1985). http://dx.doi.org/10.1016/0022-3697(85)90178-7

9. M.M.Nassary, S.A.Hussein, A.E.Belal et al., Phys. Stat. Sol. (A), 145, 151 (1994). http://dx.doi.org/10.1002/pssa.2211450114

10. V.V.Shchennikov, K.V.Savchenko, S.Popova, Phys. Solid State, 42, 1036 (2000). http://dx.doi.org/10.1134/1.1131343

11. D.M.Chyzhykov, V.P.Shchastlyvyi, Tellurium and Tellurides, Nauka, Moscow (1966).

12. Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, ed. by O.Madelung, Springer-Verlag, Berlin (1982).

13. A.P.Bakhtinov, V.B.Boledzyuk, Z.D.Kovalyuk et al., Phys. Solid State, 55, 1148 (2013). http://dx.doi.org/10.1134/S1063783413060048

14. V.B.Boledzyuk, Z.D.Kovalyuk, M.N.Pyrlya et al., Inorgan. Mater., 50, 976 (2014). http://dx.doi.org/10.1134/S0020168514100069

15. Z.D.Kovalyuk, V.B.Boledzyuk, V.V.Shevchyk et al., Semiconductors, 46, 971 (2012). http://dx.doi.org/10.1134/S1063782612080118

16. A.N.Titov, A.V.Kuranov, V.G.Pleschev et al., Phys. Rev. B, 63, 035106-1 (2001). http://dx.doi.org/10.1103/PhysRevB.63.035106

17. V.G.Pleshchev, A.N.Titov, S.G.Titova, Phys. Solid State, 45, 433 (2003). http://dx.doi.org/10.1134/1.1562225

18. V.Lashkarev, V.V.Slynko, Z.D.Kovalyuk et al., Mater. Sci. and Engin. C, 27, 1052 (2007). http://dx.doi.org/10.1016/j.msec.2006.07.028

19. S.Tikadzumi, Fizika ferromagnetizma: Magnitnye svojstva veshchestva, Mir, Moscow (1983).

Current number: