Funct. Mater. 2015; 22 (3): 365-369.

http://dx.doi.org/10.15407/fm22.03.365

Spatial resolution of scanning tunneling microscopy

T.Rozouvan, L.Poperenko, I.Shaykevich, S.Rozouvan

Faculty of Physics, T. Shevchenko National University of Kyiv, 2 Glushkova Ave., 03680 Kyiv, Ukraine

Abstract: 

Time-independent Schroedinger equation solution in paraxial approximation is obtained for de Broglie wave of electron. The solution results in exact ratios for spatial resolution of scanning tunneling microscopy (STM) of nanoobjects on a metal substrate. STM experiments on semiconductor and metal carbon nanotubes were performed in order to check the theoretical approach. The spatial resolution of the experiments reached 0.06 nm. Hexagonal structure on the semiconductor nanotube surface was registered. Relatively lower spatial resolution for the metal carbon nanotubes which is also different along and across nanotubes was registered and explained in frames of the proposed theoretical modeling. A basic ratio for STM spatial resolution for the arbitrary nanoobject was derived as a result of the approach.

Keywords: 
scanning tunneling microscopy, carbon nanotubes, Schroedinger equation
References: 

1. N.Hamada, S.I.Sawada, A.Oshiyama, Phys. Rev. Lett., 68, 1579 (1992). http://dx.doi.org/10.1103/PhysRevLett.68.1579

2. L.Chico, T.Vincent, H.Crespi et al., Phys. Rev. Lett., 76, 971 (1996). http://dx.doi.org/10.1103/PhysRevLett.76.971

3. J.-Q.Lu, J.Wu, W.Duan et al., Phys. Rev. Lett., 90, 156601 (2003). http://dx.doi.org/10.1103/PhysRevLett.90.156601

4. M.F.Lin, K.Shung, Phys. Rev. B, 51, 7592 (1995). http://dx.doi.org/10.1103/PhysRevB.51.7592

5. X.Yang, J.Ni, Phys. Rev. B, 71, 165438 (2005) http://dx.doi.org/10.1103/PhysRevB.71.165438

6. Y.Li, U.Ravaioli, S.V.Rotkin, Phys. Rev.. B, 73, 035415 (2006). http://dx.doi.org/10.1103/PhysRevB.73.035415

7. F.Leonard, J.Tersoff, Phys. Rev. Lett., 84, 4693 (2000). http://dx.doi.org/10.1103/PhysRevLett.84.4693

8. Y.Xue, M.Ratner, Physical Review. B, 70, 205416 (2004). http://dx.doi.org/10.1103/PhysRevB.70.205416

9. G.Binning, H.Rohrer, Ch.Gerber et al., Phys. Rev. Lett., 49, 57 (1982). http://dx.doi.org/10.1103/PhysRevLett.49.57

10. J.Tersoff, Phys. Rev. Lett., 57, 440 (1986). http://dx.doi.org/10.1103/PhysRevLett.57.440

11. J.Viernow, D.Y.Petrovykh, A.Kirakosian et al., Phys. Rev. B, 59, 10356 (1999). http://dx.doi.org/10.1103/PhysRevB.59.10356

12. M.Ondracek, F.Maca, J.Kudrnovsky et al., Phys. Rev. B, 74, 235437 (2006). http://dx.doi.org/10.1103/PhysRevB.74.235437

13. F.Rossel, M.Pivetta, F.Patthey et al., Phys. Rev. B, 84, 075426 (2011). http://dx.doi.org/10.1103/PhysRevB.84.075426

14. C.Thirstrup, M.Sakurai, K.Stokbro et al., Phys. Rev. Lett., 82, 1241 (1999). http://dx.doi.org/10.1103/PhysRevLett.82.1241

15. X.Gao, A.Hamelin, M.J.Weaver, Phys. Rev. B, 46, 7096 (1992). http://dx.doi.org/10.1103/PhysRevB.46.7096

16. H.Haus, Waves and Fields in Optoelectronics, Prentice-Hall Inc, New Jerse, (1984).

17. T.Rozouvan et al., Nano Hybrids, 8, 1 (2014). http://dx.doi.org/10.4028/www.scientific.net/NH.8.1

Current number: