Funct. Mater. 2015; 22 (4): 440-445.

http://dx.doi.org/10.15407/fm22.04.440

Origin of intrinsic luminescence in oxide crystals containing Bi cations and XO4 (X = P, Mo, W) molecular anionic groups

Yu.A.Hizhnyi

T. Shevchenko National University of Kyiv, 64 Volodymyrska St., 01601 Kyiv, Ukraine

Abstract: 

Intrinsic photoluminescence (PL) of BiPO4, K3Bi5(PO4)6, K2Bi(PO4)(MoO4), KBi(MoO4)2, K5Bi(MoO4)4, K2Bi(PO4)(WO4) and K6.5Bi2.5W4P6O34 crystals is studied in 2.8-14 eV range of excitation photon energies. The electronic band structures of the crystals are calculated by the Full-Potential Linear Augmented Plane Wave Method. Origin of intrinsic luminescence in studied compounds is analyzed on the ground of obtained experimental and computational results. It is found that PL emission components of BiPO4, K3Bi5(PO4)6, K2Bi(PO4)(MoO4)) and KBi(MoO4)2 in the violet-green spectral region are related to radiative transitions in Bi3+ ions. The red PL components of K2Bi(PO4)(MoO4), KBi(MoO4)2 and K5Bi(MoO4)4 have MoO42--related origin. The red PL component of K2Bi(PO4)(WO4) luminescence is presumably related to the molybdenum impurities. The intrinsic PL emission band of K6.5Bi2.5W4P6O34 is probably not related to Bi3+ ions.

Keywords: 
luminescence, bismuth, oxide crystal, electronic structure.
References: 

1. N.B.Sanyasi, B.Vishwanadh, V.Sudarsan, V.R.Kumar, Dalton Trans., 41, 3194 (2012). http://dx.doi.org/10.1039/c2dt11944g

2. M.Zhao, L.Li, J.Zheng et al., Inorg. Chem., 52, 807 (2013). http://dx.doi.org/10.1021/ic3019315

3. P.Arunkumar, C.Jayajothi, D.Jeyakumar, N.Lakshminarasimhan, RSC Advances, 2, 1477 (2012). http://dx.doi.org/10.1039/C1RA00389E

4. M.Roming, C.Feldmann, J. Mater. Sci., 44, 1412 (2009). http://dx.doi.org/10.1007/s10853-009-3258-5

5. X.He, M.Guan, N.Lian et al., J. Alloys Compd., 492, 452 (2010). http://dx.doi.org/10.1016/j.jallcom.2009.11.138

6. Z.Q.Wu, J.F.Tang, J.H.Huang et al., Opt. Mater., 34, 287 (2011). http://dx.doi.org/10.1016/j.optmat.2011.08.032

7. Yu A.Hizhnyi, S.G.Nedilko, V.P.Chornii et al., J. Alloys Compd., 614, 420 (2014). http://dx.doi.org/10.1016/j.jallcom.2014.06.111

8. S.Nedilko, V.Chornii, Yu.Hizhnyi et al., Functional Materials., 20, 29 (2013). http://dx.doi.org/10.15407/fm20.01.029

9. Yu.Hizhnyi, S.Nedilko, V.Chornii et al., Sol. St. Phenomena, 200, 114 (2013). http://dx.doi.org/10.4028/www.scientific.net/SSP.200.114

10. Yu.Hizhnyi, S.Nedilko, V.Chornii et al., 2014 IEEE Intern. Conf. on Oxide Materials for Electronic Engineering (OMEE), Book of Conf. Proc. 6912395, DOI: 10.1109/OMEE.2014.6912395 (2014), p.170. http://dx.doi.org/10.1109/OMEE.2014.6912395

11. K.V.Terebilenko, I.V.Zatovsky, N.S.Slobodyanik et al., J. Sol. St. Chem., 180, 3351 (2007). http://dx.doi.org/10.1016/j.jssc.2007.10.001

12. I.V.Zatovsky, K.V.Terebilenko, N.S.Slobodyanik et al., J. Sol. St. Chem., 179, 3550 (2006). http://dx.doi.org/10.1016/j.jssc.2006.07.027

13. I.V.Zatovsky, K.V.Terebilenko, N.S.Slobodyanik et al., Acta Crystallogr. E, 62, i193 (2006). http://dx.doi.org/10.1107/S1600536806033265

14. K.V.Terebilenko, I.V.Zatovsky, V.N.Baumer et al., J. Sol. St. Chem., 181, 2393 (2008). http://dx.doi.org/10.1016/j.jssc.2008.05.035

15. G.Zimmerer, Radiat. Measur., 42, 859 (2007). http://dx.doi.org/10.1016/j.radmeas.2007.02.050

16. P.Blaha, K.Schwarz, G.Madsen et al., WIEN2k, An Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Austria: Techn. Universitadt Wien, ISBN 3-9501031-1-2 (2001).

17. J.P.Perdew, Y.Wang, Phys. Rev. B, 45, 13244 (1992). http://dx.doi.org/10.1103/PhysRevB.45.13244

18. P.E.Blochl, O.Jepsen, O.K.Andersen, Phys. Rev. B, 49, 16223 (1994). http://dx.doi.org/10.1103/PhysRevB.49.16223

Current number: