Funct. Mater. 2016; 23 (1): 015-020.

http://dx.doi.org/10.15407/fm23.01.015

Isomorphic modification of calcium hydroxyapatite by strontium

V.L.Karbivskyy, N.A.Kurgan

G.Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, 36 Vernadsky Blvd., 03680 Kyiv, Ukraine

Abstract: 

X-ray photoelectron spectroscopy studies changes in the electronic structure of calcium hydroxyapatite with partial or total isomorphous substitution of Ca for Sr is reported in the current work. It is established significant increase in the binding energy of the core levels for calcium, oxygen and phosphorus atoms, indicating electronic density loss from these atoms and increase of the covalent component in general balance of the chemical bond. Based on numerical calculations by the LMTO method it was concluded that indirect metal-metal interaction for strontium apatite in triangles of the metal atoms is less expressed.

Keywords: 
X-ray photoelectron spectroscopy, quantum-mechanical modeling, hydroxyapatite, electronic structure, isomorphic modification.
References: 

1. C.C. Fuller, J.R.Bargar, J.A.Davis et al., Environ. Sci. Technol., 36, 158 (2002). http://dx.doi.org/10.1021/es0108483

2. E.V.Shutkova, Yu.I.Tarasevich, Khimiya i Tehnologiya Wody, 26, 556 (2004).

3. F.Fernane, M.O.Mecherri, P.Sharrock et al., Mater. Characterization, 59, 554 (2008). http://dx.doi.org/10.1016/j.matchar.2007.04.009

4. F.Z.Boujrhal, E.K.Hlil, R.Cherkaoui, Rad. Phys. and Chem., 69, 1 (2004). http://dx.doi.org/10.1016/S0969-806X(03)00460-2

5. D.J.Cherniak, Chem. Geology, 219, 297 (2005). http://dx.doi.org/10.1016/j.chemgeo.2005.02.014

6. J.Gomez del Rio, P.Sanchez, P.J.Morando et al., J. Chermosphere, 64, 1015 (2006). http://dx.doi.org/10.1016/j.chemosphere.2006.02.008

7. D.Marchat, D.Bernache-Assollant, E.Champion, J. Hazardouz Mater., 139, 453 (2007). http://dx.doi.org/10.1016/j.jhazmat.2006.02.040

8. J.Peng, Y.Song, P.Yuan et al., J. Hazardous Materials, 161, 133 (2009). http://dx.doi.org/10.1016/j.jhazmat.2008.04.061

9. R.Zhu, R.Yu, J.Yao et al., Catalysis Today, 139, 94 (2008). http://dx.doi.org/10.1016/j.cattod.2008.08.011

10. A.A.Kluchnikov, E.M.Pazuhin, Radioaktivnie Othody AES i Metody Obrajenia s Nimi, Energoatomizdat, Moscow (2005) [in Russian].

11. M.S.Phillipova, T.N.Perelet, Visnik NTUU "KPI", seria "Girnitstvo", 18, 105 (2009).

12. I.A.Sobolev, I.P.Korenkov, L.M.Khomchik et al., Ohrana Okrujayuschey Sredy pri Obezvrejivanii Radioaktivnih Othodov, Energoatomizdat, Moscow (1989) [in Russian].

13. I.W.Donald, B.L.Metcalfe, R.N.J.Taylor, J. Mater. Science, 32, 5851 (1997). http://dx.doi.org/10.1023/A:1018646507438

14. S.Dimovic, I.Smiciklas, M.Sljivic-Ivanovic et al., J. Soils Sediments, 13, 383 (2013). http://dx.doi.org/10.1007/s11368-012-0633-7

15. V.L.Karbivskyy, N.A.Kurgan, A.S.Litovchenko et al., J. Mater. Sci. and Engin., 3, 52 (2009).

16. K.Popa, J. Radioanal Nucl Chem., 298, 1527 (2013). http://dx.doi.org/10.1007/s10967-013-2551-6

17. V.R.Vermeul, J.E.Szecsody, B.G.Fritz et al., J. Groundwater Monitoring & Remediation, 34, 28 (2014).

18. T.Kanazawa, Neorganicheskie Phospatnie Materiali, Naukova Dumka, Kiev (1998).

19. A.P.Shpak, V.L.Karbovskii, V.V.Tratchevskii, Apatites, Academperiodika, Kiev (2002).

20. N.Ikeo, Y.Iijima, N.Niimura et al., Handbook of X-ray Photoelectron Spectroscopy, JEOL Ltd, Tokyo (1991).

21. V.L.Karbivskyy, A.G.Vahney, R.V.Didenko et al., Metalofizika i Noveyshie Teknologyy, 25, 1431 (2003).

Current number: