Funct. Mater. 2016; 23 (1): 027-031.

http://dx.doi.org/10.15407/fm23.01.027

Microhardness, laser damage threshold and SHG efficiency studies of potassium dihydrogen phosphate crystals doped with L-arginine amino acid

E.I.Kostenyukova1, O.N.Bezkrovnaya1, M.I.Kolybaeva1, E.F.Dolzhenkova1, N.O.Kovalenko1, A.Kanaev2, I.M.Pritula1

1Institute for Single Crystals, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2Laboratoire des Sciences des Prosedes et des Materiaux, CNRS, 13 Universite Paris, Sorbone Paris Cite, France

Abstract: 

Potassium dihydrogen phosphate (KDP) single crystals doped with L-arginine (L-arg) amino acid (with a concentration of 0.3 to 1.4 wt. % in the solution) were grown onto a point seed by the temperature reduction method. The effect of L-arg molecules on the strength properties {100} of KDP crystal were studied. Doping of KDP crystals with L-arg molecules raised the laser damage threshold in comparison with pure KDP in the sector {101}. There were defined the ranges of L-arg concentration where the microhardness and bulk laser damage threshold of KDP:L-arg crystals were higher in the growth sectors as compared with pure KDP. It was found that the efficiency of second harmonic generation in KDP:L-arg (1.4 wt.% of L-arg) exceeded the corresponding characteristic of pure KDP by ~ 2.5 times.

Keywords: 
L-arginine amino acid, microhardness, laser damage threshold, second harmonic generation.
References: 

1. D.Xue, S.Zhang, J. Chem. Phys. Lett., 301, 449 (1999). http://dx.doi.org/10.1016/S0009-2614(99)00055-X

2. D.Xue, S.Zhang, J. Phys. B, 262, 78 (1999). http://dx.doi.org/10.1016/S0921-4526(98)00465-7

3. I.Pritula, A.Kosinova, M.Kolybayeva et al., J. Mater. Res. Bull., 43, 2778 (2008). http://dx.doi.org/10.1016/j.materresbull.2007.10.040

4. D.Xue, S.Zhang, J. Phys. Chem. A, 101, 5547 (1997). http://dx.doi.org/10.1021/jp962541+

5. I.Pritula, V.Gayvoronsky, Yu.Gromov et al., J. Opt. Commun., 282, 1141 (2009). http://dx.doi.org/10.1016/j.optcom.2008.11.043

6. I.Pritula, A.Kosinova, M.Kolybayeva et al., Functional Materials, 14, 295 (2007).

7. K.Wu, C.Liu, C.Mang, J. Opt. Mater., 29, 1129 (2007). http://dx.doi.org/10.1016/j.optmat.2006.05.005

8. I.M.Pritula, Y.N.Velikhov, Proc. SPIE, 3793, 202 (1999). http://dx.doi.org/10.1117/12.351417

9. K.D.Parikh, D.J.Dave, B.B. Parekh et al., J. Bull. Mater. Science, 30, 105 (2007). http://dx.doi.org/10.1007/s12034-007-0019-4

10. J.Zyss, G.Berthier, J. Chem. Phys., 71, 75 (1979). http://dx.doi.org/10.1063/1.438380

11. P.Kumaresan, S.Moorthy Babu, P.M.Anbarasan, J. Opt. Mater., 30, 1361 (2007). http://dx.doi.org/10.1016/j.optmat.2007.07.002

12. D.J.Dave, K.D.Parikh, B.B.Parekh et al., J. Optoelectron. Advance Mater., 11, 602 (2009).

13. D.J.Dave, K.D.Parikh, M.J.Joshi, J. Advanc. Mater. Res., 665, 172 (2013). http://dx.doi.org/10.4028/www.scientific.net/AMR.665.172

14. P.Jagdish, N.P.Rajesh, J. Optoelectron. Advance Mater., 13, 962 (2011).

15. J.Govani, W.Durrer, M.Manciu et al., J. Mater. Res., 24, 2316. (2009). http://dx.doi.org/10.1557/jmr.2009.0290

16. M.Mena, C.Mahadevan, J. Cryst. Res. Technol., 43, 166 (2008). http://dx.doi.org/10.1002/crat.200711064

17. E.I.Kostenyukova, O.N.Bezkrovnaya, V.F.Tkachenko, Functional Materials, 22, 309 (2015). http://dx.doi.org/10.15407/fm22.03.309

18. D.Xu, D.Xue, J. Cryst. Growth, 286 108 (2006). http://dx.doi.org/10.1016/j.jcrysgro.2005.09.040

19. I.M.Pritula, V.I.Salo, M.I.Kolybaeva, Inorg. Mater., 37 184 (2001). http://dx.doi.org/10.1023/A:1004126114703

20. K.Sangwal, J. Mater. Chem. Phys., 63, 145 (2000). http://dx.doi.org/10.1016/S0254-0584(99)00216-3

21. A.V.Kosinova, M.I.Kolybaeva, O.N.Bezkrovnaya et al., J. Cryst. Res., 49, 965 (2014). http://dx.doi.org/10.1002/crat.201400285

22. Zh.Lin, Zh.Wang, Ch.Chen et al., J. Chem. Phys., 118, 2349 (2003). http://dx.doi.org/10.1063/1.1533734

23. R.Ledzion, P.Gorski, W.Kucharczyk, J. Phys. Chem. Solid., 68, 1965 (2007). http://dx.doi.org/10.1016/j.jpcs.2007.06.011

Current number: